initial commit
This commit is contained in:
93
apps/gaussian_blur.py
Normal file
93
apps/gaussian_blur.py
Normal file
@@ -0,0 +1,93 @@
|
||||
"""
|
||||
"""
|
||||
import os
|
||||
import pydiffvg
|
||||
import torch as th
|
||||
import scipy.ndimage.filters as F
|
||||
|
||||
|
||||
def render(canvas_width, canvas_height, shapes, shape_groups):
|
||||
_render = pydiffvg.RenderFunction.apply
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
img = _render(canvas_width, # width
|
||||
canvas_height, # height
|
||||
2, # num_samples_x
|
||||
2, # num_samples_y
|
||||
0, # seed
|
||||
None,
|
||||
*scene_args)
|
||||
return img
|
||||
|
||||
|
||||
def main():
|
||||
pydiffvg.set_device(th.device('cuda:1'))
|
||||
|
||||
# Load SVG
|
||||
svg = os.path.join("imgs", "peppers.svg")
|
||||
canvas_width, canvas_height, shapes, shape_groups = \
|
||||
pydiffvg.svg_to_scene(svg)
|
||||
|
||||
# Save initial state
|
||||
ref = render(canvas_width, canvas_height, shapes, shape_groups)
|
||||
pydiffvg.imwrite(ref.cpu(), 'results/gaussian_blur/init.png', gamma=2.2)
|
||||
|
||||
target = F.gaussian_filter(ref.cpu().numpy(), [10, 10, 0])
|
||||
target = th.from_numpy(target).to(ref.device)
|
||||
pydiffvg.imwrite(target.cpu(), 'results/gaussian_blur/target.png', gamma=2.2)
|
||||
|
||||
# Collect variables to optimize
|
||||
points_vars = []
|
||||
width_vars = []
|
||||
for path in shapes:
|
||||
path.points.requires_grad = True
|
||||
points_vars.append(path.points)
|
||||
path.stroke_width.requires_grad = True
|
||||
width_vars.append(path.stroke_width)
|
||||
color_vars = []
|
||||
for group in shape_groups:
|
||||
# do not optimize alpha
|
||||
group.fill_color[..., :3].requires_grad = True
|
||||
color_vars.append(group.fill_color)
|
||||
|
||||
# Optimize
|
||||
points_optim = th.optim.Adam(points_vars, lr=1.0)
|
||||
width_optim = th.optim.Adam(width_vars, lr=1.0)
|
||||
color_optim = th.optim.Adam(color_vars, lr=0.01)
|
||||
|
||||
for t in range(20):
|
||||
print('\niteration:', t)
|
||||
points_optim.zero_grad()
|
||||
width_optim.zero_grad()
|
||||
color_optim.zero_grad()
|
||||
# Forward pass: render the image.
|
||||
img = render(canvas_width, canvas_height, shapes, shape_groups)
|
||||
# Save the intermediate render.
|
||||
pydiffvg.imwrite(img.cpu(), 'results/gaussian_blur/iter_{}.png'.format(t), gamma=2.2)
|
||||
loss = (img - target)[..., :3].pow(2).mean()
|
||||
|
||||
print('alpha:', img[..., 3].mean().item())
|
||||
print('render loss:', loss.item())
|
||||
|
||||
# Backpropagate the gradients.
|
||||
loss.backward()
|
||||
|
||||
# Take a gradient descent step.
|
||||
points_optim.step()
|
||||
width_optim.step()
|
||||
color_optim.step()
|
||||
for group in shape_groups:
|
||||
group.fill_color.data.clamp_(0.0, 1.0)
|
||||
|
||||
# Final render
|
||||
img = render(canvas_width, canvas_height, shapes, shape_groups)
|
||||
pydiffvg.imwrite(img.cpu(), 'results/gaussian_blur/final.png', gamma=2.2)
|
||||
|
||||
# Convert the intermediate renderings to a video.
|
||||
from subprocess import call
|
||||
call(["ffmpeg", "-framerate", "24", "-i",
|
||||
"results/gaussian_blur/iter_%d.png", "-vb", "20M",
|
||||
"results/gaussian_blur/out.mp4"])
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user