initial commit
This commit is contained in:
127
apps/shared_edge_compare.py
Normal file
127
apps/shared_edge_compare.py
Normal file
@@ -0,0 +1,127 @@
|
||||
import pydiffvg
|
||||
import diffvg
|
||||
from matplotlib import cm
|
||||
import matplotlib.pyplot as plt
|
||||
import argparse
|
||||
import torch
|
||||
|
||||
def normalize(x, min_, max_):
|
||||
range = max(abs(min_), abs(max_))
|
||||
return (x + range) / (2 * range)
|
||||
|
||||
def main(args):
|
||||
canvas_width, canvas_height, shapes, shape_groups = \
|
||||
pydiffvg.svg_to_scene(args.svg_file)
|
||||
|
||||
w = int(canvas_width * args.size_scale)
|
||||
h = int(canvas_height * args.size_scale)
|
||||
|
||||
pfilter = pydiffvg.PixelFilter(type = diffvg.FilterType.box,
|
||||
radius = torch.tensor(0.5))
|
||||
|
||||
use_prefiltering = False
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups,
|
||||
filter = pfilter,
|
||||
use_prefiltering = use_prefiltering)
|
||||
|
||||
num_samples_x = 16
|
||||
num_samples_y = 16
|
||||
render = pydiffvg.RenderFunction.apply
|
||||
img = render(w, # width
|
||||
h, # height
|
||||
num_samples_x, # num_samples_x
|
||||
num_samples_y, # num_samples_y
|
||||
0, # seed
|
||||
None,
|
||||
*scene_args)
|
||||
pydiffvg.imwrite(img.cpu(), 'results/finite_difference_comp/img.png', gamma=1.0)
|
||||
|
||||
epsilon = 0.1
|
||||
def perturb_scene(axis, epsilon):
|
||||
shapes[2].points[:, axis] += epsilon
|
||||
# for s in shapes:
|
||||
# if isinstance(s, pydiffvg.Circle):
|
||||
# s.center[axis] += epsilon
|
||||
# elif isinstance(s, pydiffvg.Ellipse):
|
||||
# s.center[axis] += epsilon
|
||||
# elif isinstance(s, pydiffvg.Path):
|
||||
# s.points[:, axis] += epsilon
|
||||
# elif isinstance(s, pydiffvg.Polygon):
|
||||
# s.points[:, axis] += epsilon
|
||||
# elif isinstance(s, pydiffvg.Rect):
|
||||
# s.p_min[axis] += epsilon
|
||||
# s.p_max[axis] += epsilon
|
||||
# for s in shape_groups:
|
||||
# if isinstance(s.fill_color, pydiffvg.LinearGradient):
|
||||
# s.fill_color.begin[axis] += epsilon
|
||||
# s.fill_color.end[axis] += epsilon
|
||||
|
||||
perturb_scene(0, epsilon)
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups,
|
||||
filter = pfilter,
|
||||
use_prefiltering = use_prefiltering)
|
||||
render = pydiffvg.RenderFunction.apply
|
||||
img0 = render(w, # width
|
||||
h, # height
|
||||
num_samples_x, # num_samples_x
|
||||
num_samples_y, # num_samples_y
|
||||
0, # seed
|
||||
None,
|
||||
*scene_args)
|
||||
|
||||
forward_diff = (img0 - img) / (epsilon)
|
||||
forward_diff = forward_diff.sum(axis = 2)
|
||||
x_diff_max = 1.5
|
||||
x_diff_min = -1.5
|
||||
print(forward_diff.max())
|
||||
print(forward_diff.min())
|
||||
forward_diff = cm.viridis(normalize(forward_diff, x_diff_min, x_diff_max).cpu().numpy())
|
||||
pydiffvg.imwrite(forward_diff, 'results/finite_difference_comp/shared_edge_forward_diff.png', gamma=1.0)
|
||||
|
||||
perturb_scene(0, -2 * epsilon)
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups,
|
||||
filter = pfilter,
|
||||
use_prefiltering = use_prefiltering)
|
||||
img1 = render(w, # width
|
||||
h, # height
|
||||
num_samples_x, # num_samples_x
|
||||
num_samples_y, # num_samples_y
|
||||
0, # seed
|
||||
None,
|
||||
*scene_args)
|
||||
backward_diff = (img - img1) / (epsilon)
|
||||
backward_diff = backward_diff.sum(axis = 2)
|
||||
print(backward_diff.max())
|
||||
print(backward_diff.min())
|
||||
backward_diff = cm.viridis(normalize(backward_diff, x_diff_min, x_diff_max).cpu().numpy())
|
||||
pydiffvg.imwrite(backward_diff, 'results/finite_difference_comp/shared_edge_backward_diff.png', gamma=1.0)
|
||||
perturb_scene(0, epsilon)
|
||||
|
||||
num_samples_x = 4
|
||||
num_samples_y = 4
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups,
|
||||
filter = pfilter,
|
||||
use_prefiltering = use_prefiltering)
|
||||
render_grad = pydiffvg.RenderFunction.render_grad
|
||||
img_grad = render_grad(torch.ones(h, w, 4),
|
||||
w, # width
|
||||
h, # height
|
||||
num_samples_x, # num_samples_x
|
||||
num_samples_y, # num_samples_y
|
||||
0, # seed
|
||||
*scene_args)
|
||||
print(img_grad[:, :, 0].max())
|
||||
print(img_grad[:, :, 0].min())
|
||||
x_diff = cm.viridis(normalize(img_grad[:, :, 0], x_diff_min, x_diff_max).cpu().numpy())
|
||||
pydiffvg.imwrite(x_diff, 'results/finite_difference_comp/ours_x_diff.png', gamma=1.0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("svg_file", help="source SVG path")
|
||||
parser.add_argument("--size_scale", type=float, default=1.0)
|
||||
args = parser.parse_args()
|
||||
main(args)
|
Reference in New Issue
Block a user