initial commit
This commit is contained in:
118
apps/single_circle_outline.py
Normal file
118
apps/single_circle_outline.py
Normal file
@@ -0,0 +1,118 @@
|
||||
import pydiffvg
|
||||
import torch
|
||||
import skimage
|
||||
import numpy as np
|
||||
|
||||
# Use GPU if available
|
||||
pydiffvg.set_use_gpu(torch.cuda.is_available())
|
||||
|
||||
canvas_width, canvas_height = 256, 256
|
||||
circle = pydiffvg.Circle(radius = torch.tensor(40.0),
|
||||
center = torch.tensor([128.0, 128.0]),
|
||||
stroke_width = torch.tensor(5.0))
|
||||
shapes = [circle]
|
||||
circle_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]),
|
||||
fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0]),
|
||||
stroke_color = torch.tensor([0.6, 0.3, 0.6, 0.8]))
|
||||
shape_groups = [circle_group]
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
|
||||
render = pydiffvg.RenderFunction.apply
|
||||
img = render(256, # width
|
||||
256, # height
|
||||
2, # num_samples_x
|
||||
2, # num_samples_y
|
||||
0, # seed
|
||||
None,
|
||||
*scene_args)
|
||||
# The output image is in linear RGB space. Do Gamma correction before saving the image.
|
||||
pydiffvg.imwrite(img.cpu(), 'results/single_circle_outline/target.png', gamma=2.2)
|
||||
target = img.clone()
|
||||
|
||||
# Move the circle to produce initial guess
|
||||
# normalize radius & center for easier learning rate
|
||||
radius_n = torch.tensor(20.0 / 256.0, requires_grad=True)
|
||||
center_n = torch.tensor([108.0 / 256.0, 138.0 / 256.0], requires_grad=True)
|
||||
fill_color = torch.tensor([0.3, 0.2, 0.8, 1.0], requires_grad=True)
|
||||
stroke_color = torch.tensor([0.4, 0.7, 0.5, 0.5], requires_grad=True)
|
||||
stroke_width_n = torch.tensor(10.0 / 100.0, requires_grad=True)
|
||||
circle.radius = radius_n * 256
|
||||
circle.center = center_n * 256
|
||||
circle.stroke_width = stroke_width_n * 100
|
||||
circle_group.fill_color = fill_color
|
||||
circle_group.stroke_color = stroke_color
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
img = render(256, # width
|
||||
256, # height
|
||||
2, # num_samples_x
|
||||
2, # num_samples_y
|
||||
1, # seed
|
||||
None,
|
||||
*scene_args)
|
||||
pydiffvg.imwrite(img.cpu(), 'results/single_circle_outline/init.png', gamma=2.2)
|
||||
|
||||
# Optimize for radius & center
|
||||
optimizer = torch.optim.Adam([radius_n, center_n, fill_color, stroke_color, stroke_width_n], lr=1e-2)
|
||||
# Run 200 Adam iterations.
|
||||
for t in range(200):
|
||||
print('iteration:', t)
|
||||
optimizer.zero_grad()
|
||||
# Forward pass: render the image.
|
||||
circle.radius = radius_n * 256
|
||||
circle.center = center_n * 256
|
||||
circle.stroke_width = stroke_width_n * 100
|
||||
circle_group.fill_color = fill_color
|
||||
circle_group.stroke_color = stroke_color
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
img = render(256, # width
|
||||
256, # height
|
||||
2, # num_samples_x
|
||||
2, # num_samples_y
|
||||
t+1, # seed
|
||||
None,
|
||||
*scene_args)
|
||||
# Save the intermediate render.
|
||||
pydiffvg.imwrite(img.cpu(), 'results/single_circle_outline/iter_{}.png'.format(t), gamma=2.2)
|
||||
# Compute the loss function. Here it is L2.
|
||||
loss = (img - target).pow(2).sum()
|
||||
print('loss:', loss.item())
|
||||
|
||||
# Backpropagate the gradients.
|
||||
loss.backward()
|
||||
# Print the gradients
|
||||
print('radius.grad:', radius_n.grad)
|
||||
print('center.grad:', center_n.grad)
|
||||
print('fill_color.grad:', fill_color.grad)
|
||||
print('stroke_color.grad:', stroke_color.grad)
|
||||
print('stroke_width.grad:', stroke_width_n.grad)
|
||||
|
||||
# Take a gradient descent step.
|
||||
optimizer.step()
|
||||
# Print the current params.
|
||||
print('radius:', circle.radius)
|
||||
print('center:', circle.center)
|
||||
print('stroke_width:', circle.stroke_width)
|
||||
print('fill_color:', circle_group.fill_color)
|
||||
print('stroke_color:', circle_group.stroke_color)
|
||||
|
||||
# Render the final result.
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
img = render(256, # width
|
||||
256, # height
|
||||
2, # num_samples_x
|
||||
2, # num_samples_y
|
||||
202, # seed
|
||||
None,
|
||||
*scene_args)
|
||||
# Save the images and differences.
|
||||
pydiffvg.imwrite(img.cpu(), 'results/single_circle_outline/final.png')
|
||||
|
||||
# Convert the intermediate renderings to a video.
|
||||
from subprocess import call
|
||||
call(["ffmpeg", "-framerate", "24", "-i",
|
||||
"results/single_circle_outline/iter_%d.png", "-vb", "20M",
|
||||
"results/single_circle_outline/out.mp4"])
|
Reference in New Issue
Block a user