initial commit
This commit is contained in:
114
apps/single_circle_sdf.py
Normal file
114
apps/single_circle_sdf.py
Normal file
@@ -0,0 +1,114 @@
|
||||
import pydiffvg
|
||||
import torch
|
||||
import skimage
|
||||
import numpy as np
|
||||
|
||||
# Use GPU if available
|
||||
pydiffvg.set_use_gpu(torch.cuda.is_available())
|
||||
|
||||
canvas_width = 256
|
||||
canvas_height = 256
|
||||
circle = pydiffvg.Circle(radius = torch.tensor(40.0),
|
||||
center = torch.tensor([128.0, 128.0]))
|
||||
shapes = [circle]
|
||||
circle_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]),
|
||||
fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0]))
|
||||
shape_groups = [circle_group]
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups,
|
||||
output_type = pydiffvg.OutputType.sdf)
|
||||
|
||||
render = pydiffvg.RenderFunction.apply
|
||||
img = render(256, # width
|
||||
256, # height
|
||||
2, # num_samples_x
|
||||
2, # num_samples_y
|
||||
0, # seed
|
||||
None,
|
||||
*scene_args)
|
||||
img = img / 256 # Normalize SDF to [0, 1]
|
||||
pydiffvg.imwrite(img.cpu(), 'results/single_circle_sdf/target.png')
|
||||
target = img.clone()
|
||||
|
||||
# Move the circle to produce initial guess
|
||||
# normalize radius & center for easier learning rate
|
||||
radius_n = torch.tensor(20.0 / 256.0, requires_grad=True)
|
||||
center_n = torch.tensor([108.0 / 256.0, 138.0 / 256.0], requires_grad=True)
|
||||
color = torch.tensor([0.3, 0.2, 0.8, 1.0], requires_grad=True)
|
||||
circle.radius = radius_n * 256
|
||||
circle.center = center_n * 256
|
||||
circle_group.fill_color = color
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups,
|
||||
output_type = pydiffvg.OutputType.sdf)
|
||||
img = render(256, # width
|
||||
256, # height
|
||||
2, # num_samples_x
|
||||
2, # num_samples_y
|
||||
1, # seed
|
||||
None,
|
||||
*scene_args)
|
||||
img = img / 256 # Normalize SDF to [0, 1]
|
||||
pydiffvg.imwrite(img.cpu(), 'results/single_circle_sdf/init.png')
|
||||
|
||||
# Optimize for radius & center
|
||||
optimizer = torch.optim.Adam([radius_n, center_n, color], lr=1e-2)
|
||||
# Run 100 Adam iterations.
|
||||
for t in range(100):
|
||||
print('iteration:', t)
|
||||
optimizer.zero_grad()
|
||||
# Forward pass: render the image.
|
||||
circle.radius = radius_n * 256
|
||||
circle.center = center_n * 256
|
||||
circle_group.fill_color = color
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups,
|
||||
output_type = pydiffvg.OutputType.sdf)
|
||||
img = render(256, # width
|
||||
256, # height
|
||||
2, # num_samples_x
|
||||
2, # num_samples_y
|
||||
t+1, # seed
|
||||
None,
|
||||
*scene_args)
|
||||
img = img / 256 # Normalize SDF to [0, 1]
|
||||
# Save the intermediate render.
|
||||
pydiffvg.imwrite(img.cpu(), 'results/single_circle_sdf/iter_{}.png'.format(t), gamma=2.2)
|
||||
# Compute the loss function. Here it is L2.
|
||||
loss = (img - target).pow(2).sum()
|
||||
print('loss:', loss.item())
|
||||
|
||||
# Backpropagate the gradients.
|
||||
loss.backward()
|
||||
# Print the gradients
|
||||
print('radius.grad:', radius_n.grad)
|
||||
print('center.grad:', center_n.grad)
|
||||
print('color.grad:', color.grad)
|
||||
|
||||
# Take a gradient descent step.
|
||||
optimizer.step()
|
||||
# Print the current params.
|
||||
print('radius:', circle.radius)
|
||||
print('center:', circle.center)
|
||||
print('color:', circle_group.fill_color)
|
||||
|
||||
# Render the final result.
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups,
|
||||
output_type = pydiffvg.OutputType.sdf)
|
||||
img = render(256, # width
|
||||
256, # height
|
||||
2, # num_samples_x
|
||||
2, # num_samples_y
|
||||
102, # seed
|
||||
None,
|
||||
*scene_args)
|
||||
img = img / 256 # Normalize SDF to [0, 1]
|
||||
# Save the images and differences.
|
||||
pydiffvg.imwrite(img.cpu(), 'results/single_circle_sdf/final.png')
|
||||
|
||||
# Convert the intermediate renderings to a video.
|
||||
from subprocess import call
|
||||
call(["ffmpeg", "-framerate", "24", "-i",
|
||||
"results/single_circle_sdf/iter_%d.png", "-vb", "20M",
|
||||
"results/single_circle_sdf/out.mp4"])
|
Reference in New Issue
Block a user