initial commit
This commit is contained in:
94
apps/single_circle_tf.py
Normal file
94
apps/single_circle_tf.py
Normal file
@@ -0,0 +1,94 @@
|
||||
import pydiffvg_tensorflow as pydiffvg
|
||||
import tensorflow as tf
|
||||
import skimage
|
||||
import numpy as np
|
||||
|
||||
canvas_width = 256
|
||||
canvas_height = 256
|
||||
circle = pydiffvg.Circle(radius = tf.constant(40.0),
|
||||
center = tf.constant([128.0, 128.0]))
|
||||
shapes = [circle]
|
||||
circle_group = pydiffvg.ShapeGroup(shape_ids = tf.constant([0], dtype = tf.int32),
|
||||
fill_color = tf.constant([0.3, 0.6, 0.3, 1.0]))
|
||||
shape_groups = [circle_group]
|
||||
scene_args = pydiffvg.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
|
||||
render = pydiffvg.render
|
||||
img = render(tf.constant(256), # width
|
||||
tf.constant(256), # height
|
||||
tf.constant(2), # num_samples_x
|
||||
tf.constant(2), # num_samples_y
|
||||
tf.constant(0), # seed
|
||||
*scene_args)
|
||||
# The output image is in linear RGB space. Do Gamma correction before saving the image.
|
||||
pydiffvg.imwrite(img, 'results/single_circle_tf/target.png', gamma=2.2)
|
||||
target = tf.identity(img)
|
||||
|
||||
# Move the circle to produce initial guess
|
||||
# normalize radius & center for easier learning rate
|
||||
radius_n = tf.Variable(20.0 / 256.0)
|
||||
center_n = tf.Variable([108.0 / 256.0, 138.0 / 256.0])
|
||||
color = tf.Variable([0.3, 0.2, 0.8, 1.0])
|
||||
circle.radius = radius_n * 256
|
||||
circle.center = center_n * 256
|
||||
circle_group.fill_color = color
|
||||
scene_args = pydiffvg.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
img = render(tf.constant(256), # width
|
||||
tf.constant(256), # height
|
||||
tf.constant(2), # num_samples_x
|
||||
tf.constant(2), # num_samples_y
|
||||
tf.constant(1), # seed
|
||||
*scene_args)
|
||||
pydiffvg.imwrite(img, 'results/single_circle_tf/init.png', gamma=2.2)
|
||||
|
||||
optimizer = tf.compat.v1.train.AdamOptimizer(1e-2)
|
||||
|
||||
for t in range(100):
|
||||
print('iteration:', t)
|
||||
|
||||
with tf.GradientTape() as tape:
|
||||
# Forward pass: render the image.
|
||||
circle.radius = radius_n * 256
|
||||
circle.center = center_n * 256
|
||||
circle_group.fill_color = color
|
||||
# Important to use a different seed every iteration, otherwise the result
|
||||
# would be biased.
|
||||
scene_args = pydiffvg.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
img = render(tf.constant(256), # width
|
||||
tf.constant(256), # height
|
||||
tf.constant(2), # num_samples_x
|
||||
tf.constant(2), # num_samples_y
|
||||
tf.constant(t+1), # seed,
|
||||
*scene_args)
|
||||
loss_value = tf.reduce_sum(tf.square(img - target))
|
||||
|
||||
print(f"loss_value: {loss_value}")
|
||||
pydiffvg.imwrite(img, 'results/single_circle_tf/iter_{}.png'.format(t))
|
||||
|
||||
grads = tape.gradient(loss_value, [radius_n, center_n, color])
|
||||
print(grads)
|
||||
optimizer.apply_gradients(zip(grads, [radius_n, center_n, color]))
|
||||
|
||||
# Render the final result.
|
||||
circle.radius = radius_n * 256
|
||||
circle.center = center_n * 256
|
||||
circle_group.fill_color = color
|
||||
scene_args = pydiffvg.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
img = render(tf.constant(256), # width
|
||||
tf.constant(256), # height
|
||||
tf.constant(2), # num_samples_x
|
||||
tf.constant(2), # num_samples_y
|
||||
tf.constant(101), # seed
|
||||
*scene_args)
|
||||
# Save the images and differences.
|
||||
pydiffvg.imwrite(img.cpu(), 'results/single_circle_tf/final.png')
|
||||
|
||||
# Convert the intermediate renderings to a video.
|
||||
from subprocess import call
|
||||
call(["ffmpeg", "-framerate", "24", "-i",
|
||||
"results/single_circle_tf/iter_%d.png", "-vb", "20M",
|
||||
"results/single_circle_tf/out.mp4"])
|
Reference in New Issue
Block a user