diff --git a/apps/test_triangle.py b/apps/test_triangle.py new file mode 100644 index 0000000..dfc7eed --- /dev/null +++ b/apps/test_triangle.py @@ -0,0 +1,142 @@ +import pydiffvg +import torch +import skimage +import numpy as np + +# Use GPU if available +pydiffvg.set_use_gpu(torch.cuda.is_available()) + +canvas_width, canvas_height = 256, 256 +num_control_points = torch.tensor([2, 2, 2]) +points = torch.tensor([[20.0, 30.0], # base + [50.0, 60.0], # control point + [ 90.0, 198.0], # control point + [ 60.0, 218.0], # base + [ 90.0, 180.0], # control point + [200.0, 85.0], # control point + [230.0, 90.0], # base + [220.0, 70.0], # control point + [130.0, 55.0]]) # control point +path = pydiffvg.Path(num_control_points = num_control_points, + points = points, + is_closed = True) +shapes = [path] +path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]), + fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0])) +shape_groups = [path_group] +scene_args = pydiffvg.RenderFunction.serialize_scene(\ + canvas_width, canvas_height, shapes, shape_groups) + +render = pydiffvg.RenderFunction.apply +img = render(256, # width + 256, # height + 2, # num_samples_x + 2, # num_samples_y + 0, # seed + None, + *scene_args) +# The output image is in linear RGB space. Do Gamma correction before saving the image. +pydiffvg.imwrite(img.cpu(), 'results/test_curve/target.png', gamma=2.2) +target = img.clone() + +# Load the obj file, get the vertices/control points +obj = "imgs/Triangle.obj" +vertices_tmp, faces_tmp = pydiffvg.obj_to_scene(obj) +print(float(vertices_tmp[1][1])) +print(faces_tmp) + +vertices = [] +faces = [] +for v in vertices_tmp: + vertices.append([float(v[1]), float(v[2])]) +for f in faces_tmp: + vs_count = len(f) + tmp = [] + for v in f[1:]: + tmp.append(int(v)) + faces.append(tmp) +print(vertices) +print(faces) + +# Ternary subdivision +# Move the path to produce initial guess +# normalize points for easier learning rate +points_n = torch.tensor([[vertices[0][0]/256.0, vertices[0][1]/256.0], # base + [70.0/256.0, 140.0/256.0], # control point + [50.0/256.0, 100.0/256.0], # control point + [vertices[1][0]/256.0, vertices[1][1]/256.0], # base + [80.0/256.0, 40.0/256.0], # control point + [120.0/256.0, 40.0/256.0], # control point + [vertices[2][0]/256.0, vertices[2][1]/256.0], # base + [150.0/256.0, 100.0/256.0], # control point + [130.0/256.0, 140.0/256.0]], # control point + requires_grad = True) +color = torch.tensor([0.3, 0.2, 0.5, 1.0], requires_grad=True) +path.points = points_n * 256 +path_group.fill_color = color +scene_args = pydiffvg.RenderFunction.serialize_scene(\ + canvas_width, canvas_height, shapes, shape_groups) +img = render(256, # width + 256, # height + 2, # num_samples_x + 2, # num_samples_y + 1, # seed + None, + *scene_args) +pydiffvg.imwrite(img.cpu(), 'results/test_curve/init.png', gamma=2.2) + +# Optimize +optimizer = torch.optim.Adam([points_n, color], lr=1e-2) +# Run 100 Adam iterations. +for t in range(100): + print('iteration:', t) + optimizer.zero_grad() + # Forward pass: render the image. + path.points = points_n * 256 + path_group.fill_color = color + scene_args = pydiffvg.RenderFunction.serialize_scene(\ + canvas_width, canvas_height, shapes, shape_groups) + img = render(256, # width + 256, # height + 2, # num_samples_x + 2, # num_samples_y + t+1, # seed + None, + *scene_args) + # Save the intermediate render. + pydiffvg.imwrite(img.cpu(), 'results/test_curve/iter_{}.png'.format(t), gamma=2.2) + # Compute the loss function. Here it is L2. + loss = (img - target).pow(2).sum() + print('loss:', loss.item()) + + # Backpropagate the gradients. + loss.backward() + # Print the gradients + print('points_n.grad:', points_n.grad) + print('color.grad:', color.grad) + + # Take a gradient descent step. + optimizer.step() + # Print the current params. + print('points:', path.points) + print('color:', path_group.fill_color) + +# Render the final result. +scene_args = pydiffvg.RenderFunction.serialize_scene(\ + canvas_width, canvas_height, shapes, shape_groups) +img = render(256, # width + 256, # height + 2, # num_samples_x + 2, # num_samples_y + 102, # seed + None, + *scene_args) +# Save the images and differences. +pydiffvg.imwrite(img.cpu(), 'results/test_curve/final.png') + +# Convert the intermediate renderings to a video. +from subprocess import call +call(["ffmpeg", "-framerate", "24", "-i", + "results/test_curve/iter_%d.png", "-vb", "20M", + "results/test_curve/out.mp4"]) + diff --git a/apps/test_triangles.py b/apps/test_triangles.py new file mode 100644 index 0000000..c3960e7 --- /dev/null +++ b/apps/test_triangles.py @@ -0,0 +1,144 @@ +import pydiffvg +import torch +import skimage +import numpy as np + +# Use GPU if available +pydiffvg.set_use_gpu(torch.cuda.is_available()) + +canvas_width, canvas_height = 256, 256 +num_control_points = torch.tensor([2, 2, 2]) +points = torch.tensor([[20.0, 30.0], # base + [50.0, 60.0], # control point + [ 90.0, 198.0], # control point + [ 60.0, 218.0], # base + [ 90.0, 180.0], # control point + [200.0, 85.0], # control point + [230.0, 90.0], # base + [220.0, 70.0], # control point + [130.0, 55.0]]) # control point +path = pydiffvg.Path(num_control_points = num_control_points, + points = points, + is_closed = True) +shapes = [path] +path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]), + fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0])) +shape_groups = [path_group] +scene_args = pydiffvg.RenderFunction.serialize_scene(\ + canvas_width, canvas_height, shapes, shape_groups) + +render = pydiffvg.RenderFunction.apply +img = render(256, # width + 256, # height + 2, # num_samples_x + 2, # num_samples_y + 0, # seed + None, + *scene_args) +# The output image is in linear RGB space. Do Gamma correction before saving the image. +pydiffvg.imwrite(img.cpu(), 'results/test_triangles/target.png', gamma=2.2) +target = img.clone() + +# Load the obj file, get the vertices/control points +obj = "imgs/Triangles.obj" +vertices_tmp, faces_tmp = pydiffvg.obj_to_scene(obj) +print(float(vertices_tmp[1][1])) +print(faces_tmp) + +vertices = [] +faces = [] +for v in vertices_tmp: + vertices.append([float(v[1]), float(v[2])]) +for f in faces_tmp: + vs_count = len(f) + tmp = [] + for v in f[1:]: + tmp.append(int(v)) + faces.append(tmp) +print(vertices) +print(faces) + +quit() + +# Ternary subdivision +# Move the path to produce initial guess +# normalize points for easier learning rate +points_n = torch.tensor([[vertices[0][0]/256.0, vertices[0][1]/256.0], # base + [70.0/256.0, 140.0/256.0], # control point + [50.0/256.0, 100.0/256.0], # control point + [vertices[1][0]/256.0, vertices[1][1]/256.0], # base + [80.0/256.0, 40.0/256.0], # control point + [120.0/256.0, 40.0/256.0], # control point + [vertices[2][0]/256.0, vertices[2][1]/256.0], # base + [150.0/256.0, 100.0/256.0], # control point + [130.0/256.0, 140.0/256.0]], # control point + requires_grad = True) +color = torch.tensor([0.3, 0.2, 0.5, 1.0], requires_grad=True) +path.points = points_n * 256 +path_group.fill_color = color +scene_args = pydiffvg.RenderFunction.serialize_scene(\ + canvas_width, canvas_height, shapes, shape_groups) +img = render(256, # width + 256, # height + 2, # num_samples_x + 2, # num_samples_y + 1, # seed + None, + *scene_args) +pydiffvg.imwrite(img.cpu(), 'results/test_triangles/init.png', gamma=2.2) + +# Optimize +optimizer = torch.optim.Adam([points_n, color], lr=1e-2) +# Run 100 Adam iterations. +for t in range(100): + print('iteration:', t) + optimizer.zero_grad() + # Forward pass: render the image. + path.points = points_n * 256 + path_group.fill_color = color + scene_args = pydiffvg.RenderFunction.serialize_scene(\ + canvas_width, canvas_height, shapes, shape_groups) + img = render(256, # width + 256, # height + 2, # num_samples_x + 2, # num_samples_y + t+1, # seed + None, + *scene_args) + # Save the intermediate render. + pydiffvg.imwrite(img.cpu(), 'results/test_triangles/iter_{}.png'.format(t), gamma=2.2) + # Compute the loss function. Here it is L2. + loss = (img - target).pow(2).sum() + print('loss:', loss.item()) + + # Backpropagate the gradients. + loss.backward() + # Print the gradients + print('points_n.grad:', points_n.grad) + print('color.grad:', color.grad) + + # Take a gradient descent step. + optimizer.step() + # Print the current params. + print('points:', path.points) + print('color:', path_group.fill_color) + +# Render the final result. +scene_args = pydiffvg.RenderFunction.serialize_scene(\ + canvas_width, canvas_height, shapes, shape_groups) +img = render(256, # width + 256, # height + 2, # num_samples_x + 2, # num_samples_y + 102, # seed + None, + *scene_args) +# Save the images and differences. +pydiffvg.imwrite(img.cpu(), 'results/test_triangles/final.png') + +# Convert the intermediate renderings to a video. +from subprocess import call +call(["ffmpeg", "-framerate", "24", "-i", + "results/test_triangles/iter_%d.png", "-vb", "20M", + "results/test_triangles/out.mp4"]) +