From f97b3baf53d0ed09683cdabab3f402d275abe017 Mon Sep 17 00:00:00 2001 From: Jerod Weinman Date: Tue, 22 Dec 2020 13:48:00 -0600 Subject: [PATCH] Added closed curve tensorflow example --- apps/single_curve_tf.py | 110 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 110 insertions(+) create mode 100644 apps/single_curve_tf.py diff --git a/apps/single_curve_tf.py b/apps/single_curve_tf.py new file mode 100644 index 0000000..ce726f9 --- /dev/null +++ b/apps/single_curve_tf.py @@ -0,0 +1,110 @@ +import pydiffvg_tensorflow as pydiffvg +import tensorflow as tf +import skimage +import numpy as np + +canvas_width, canvas_height = 256, 256 +num_control_points = tf.constant([2, 2, 2]) + +points = tf.constant([[120.0, 30.0], # base + [150.0, 60.0], # control point + [ 90.0, 198.0], # control point + [ 60.0, 218.0], # base + [ 90.0, 180.0], # control point + [200.0, 65.0], # control point + [210.0, 98.0], # base + [220.0, 70.0], # control point + [130.0, 55.0]]) # control point +path = pydiffvg.Path(num_control_points = num_control_points, + points = points, + is_closed = True) +shapes = [path] +path_group = pydiffvg.ShapeGroup( shape_ids = tf.constant([0], dtype=tf.int32), + fill_color = tf.constant([0.3, 0.6, 0.3, 1.0])) +shape_groups = [path_group] +scene_args = pydiffvg.serialize_scene(\ + canvas_width, canvas_height, shapes, shape_groups) +render = pydiffvg.render +img = render(tf.constant(256), # width + tf.constant(256), # height + tf.constant(2), # num_samples_x + tf.constant(2), # num_samples_y + tf.constant(0), # seed + *scene_args) +# The output image is in linear RGB space. Do Gamma correction before saving the image. +pydiffvg.imwrite(img, 'results/single_curve_tf/target.png', gamma=2.2) +target = tf.identity(img) + +# Move the path to produce initial guess +# normalize points for easier learning rate +points_n = tf.Variable([[100.0/256.0, 40.0/256.0], # base + [155.0/256.0, 65.0/256.0], # control point + [100.0/256.0, 180.0/256.0], # control point + [ 65.0/256.0, 238.0/256.0], # base + [100.0/256.0, 200.0/256.0], # control point + [170.0/256.0, 55.0/256.0], # control point + [220.0/256.0, 100.0/256.0], # base + [210.0/256.0, 80.0/256.0], # control point + [140.0/256.0, 60.0/256.0]]) # control point + +color = tf.Variable([0.3, 0.2, 0.5, 1.0]) +path.points = points_n * 256 +path_group.fill_color = color +scene_args = pydiffvg.serialize_scene(\ + canvas_width, canvas_height, shapes, shape_groups) +img = render(tf.constant(256), # width + tf.constant(256), # height + tf.constant(2), # num_samples_x + tf.constant(2), # num_samples_y + tf.constant(1), # seed + *scene_args) +pydiffvg.imwrite(img, 'results/single_curve_tf/init.png', gamma=2.2) + +optimizer = tf.compat.v1.train.AdamOptimizer(1e-2) + +for t in range(100): + print('iteration:', t) + + with tf.GradientTape() as tape: + # Forward pass: render the image. + path.points = points_n * 256 + path_group.fill_color = color + # Important to use a different seed every iteration, otherwise the result + # would be biased. + scene_args = pydiffvg.serialize_scene(\ + canvas_width, canvas_height, shapes, shape_groups) + img = render(tf.constant(256), # width + tf.constant(256), # height + tf.constant(2), # num_samples_x + tf.constant(2), # num_samples_y + tf.constant(t+1), # seed, + *scene_args) + loss_value = tf.reduce_sum(tf.square(img - target)) + + print(f"loss_value: {loss_value}") + pydiffvg.imwrite(img, 'results/single_curve_tf/iter_{}.png'.format(t)) + + grads = tape.gradient(loss_value, [points_n, color]) + #grads = tape.gradient(loss_value, [points_n]) + print(grads) + optimizer.apply_gradients(zip(grads, [points_n, color])) + +# Render the final result. +path.points = points_n * 256 +path_group.fill_color = color +scene_args = pydiffvg.serialize_scene(\ + canvas_width, canvas_height, shapes, shape_groups) +img = render(tf.constant(256), # width + tf.constant(256), # height + tf.constant(2), # num_samples_x + tf.constant(2), # num_samples_y + tf.constant(101), # seed + *scene_args) +# Save the images and differences. +pydiffvg.imwrite(img, 'results/single_curve_tf/final.png') + +# Convert the intermediate renderings to a video. +from subprocess import call +call(["ffmpeg", "-framerate", "24", "-i", + "results/single_curve_tf/iter_%d.png", "-vb", "20M", + "results/single_curve_tf/out.mp4"])