import pydiffvg_tensorflow as pydiffvg import tensorflow as tf import skimage import numpy as np canvas_width = 256 canvas_height = 256 circle = pydiffvg.Circle(radius = tf.constant(40.0), center = tf.constant([128.0, 128.0])) shapes = [circle] circle_group = pydiffvg.ShapeGroup(shape_ids = tf.constant([0], dtype = tf.int32), fill_color = tf.constant([0.3, 0.6, 0.3, 1.0])) shape_groups = [circle_group] scene_args = pydiffvg.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) render = pydiffvg.render img = render(tf.constant(256), # width tf.constant(256), # height tf.constant(2), # num_samples_x tf.constant(2), # num_samples_y tf.constant(0), # seed *scene_args) # The output image is in linear RGB space. Do Gamma correction before saving the image. pydiffvg.imwrite(img, 'results/single_circle_tf/target.png', gamma=2.2) target = tf.identity(img) # Move the circle to produce initial guess # normalize radius & center for easier learning rate radius_n = tf.Variable(20.0 / 256.0) center_n = tf.Variable([108.0 / 256.0, 138.0 / 256.0]) color = tf.Variable([0.3, 0.2, 0.8, 1.0]) circle.radius = radius_n * 256 circle.center = center_n * 256 circle_group.fill_color = color scene_args = pydiffvg.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(tf.constant(256), # width tf.constant(256), # height tf.constant(2), # num_samples_x tf.constant(2), # num_samples_y tf.constant(1), # seed *scene_args) pydiffvg.imwrite(img, 'results/single_circle_tf/init.png', gamma=2.2) optimizer = tf.compat.v1.train.AdamOptimizer(1e-2) for t in range(100): print('iteration:', t) with tf.GradientTape() as tape: # Forward pass: render the image. circle.radius = radius_n * 256 circle.center = center_n * 256 circle_group.fill_color = color # Important to use a different seed every iteration, otherwise the result # would be biased. scene_args = pydiffvg.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(tf.constant(256), # width tf.constant(256), # height tf.constant(2), # num_samples_x tf.constant(2), # num_samples_y tf.constant(t+1), # seed, *scene_args) loss_value = tf.reduce_sum(tf.square(img - target)) print(f"loss_value: {loss_value}") pydiffvg.imwrite(img, 'results/single_circle_tf/iter_{}.png'.format(t)) grads = tape.gradient(loss_value, [radius_n, center_n, color]) print(grads) optimizer.apply_gradients(zip(grads, [radius_n, center_n, color])) # Render the final result. circle.radius = radius_n * 256 circle.center = center_n * 256 circle_group.fill_color = color scene_args = pydiffvg.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(tf.constant(256), # width tf.constant(256), # height tf.constant(2), # num_samples_x tf.constant(2), # num_samples_y tf.constant(101), # seed *scene_args) # Save the images and differences. pydiffvg.imwrite(img.cpu(), 'results/single_circle_tf/final.png') # Convert the intermediate renderings to a video. from subprocess import call call(["ffmpeg", "-framerate", "24", "-i", "results/single_circle_tf/iter_%d.png", "-vb", "20M", "results/single_circle_tf/out.mp4"])