import pydiffvg_tensorflow as pydiffvg import tensorflow as tf import skimage import numpy as np canvas_width, canvas_height = 256, 256 num_control_points = tf.constant([2]) points = tf.constant([[120.0, 30.0], # base [150.0, 60.0], # control point [ 90.0, 198.0], # control point [ 60.0, 218.0]]) # base path = pydiffvg.Path(num_control_points = num_control_points, points = points, is_closed = False, stroke_width = tf.constant(15.0)) shapes = [path] path_group = pydiffvg.ShapeGroup( shape_ids = tf.constant([0], dtype=tf.int32), fill_color = tf.constant([0.0, 0.0, 0.0, 0.0]), stroke_color = tf.constant([0.6, 0.3, 0.6, 0.8])) shape_groups = [path_group] scene_args = pydiffvg.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) render = pydiffvg.render img = render(tf.constant(256), # width tf.constant(256), # height tf.constant(2), # num_samples_x tf.constant(2), # num_samples_y tf.constant(0), # seed *scene_args) # The output image is in linear RGB space. Do Gamma correction before saving the image. pydiffvg.imwrite(img, 'results/single_stroke_tf/target.png', gamma=2.2) target = tf.identity(img) # Move the path to produce initial guess # normalize points for easier learning rate points_n = tf.Variable([[100.0/256.0, 40.0/256.0], # base [155.0/256.0, 65.0/256.0], # control point [100.0/256.0, 180.0/256.0], # control point [ 65.0/256.0, 238.0/256.0]] # base ) stroke_color = tf.Variable([0.4, 0.7, 0.5, 0.5]) stroke_width_n = tf.Variable(5.0 / 100.0) path.points = points_n * 256 path.stroke_width = stroke_width_n * 100 path_group.stroke_color = stroke_color scene_args = pydiffvg.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(tf.constant(256), # width tf.constant(256), # height tf.constant(2), # num_samples_x tf.constant(2), # num_samples_y tf.constant(1), # seed *scene_args) pydiffvg.imwrite(img, 'results/single_stroke_tf/init.png', gamma=2.2) optimizer = tf.compat.v1.train.AdamOptimizer(1e-2) for t in range(100): print('iteration:', t) with tf.GradientTape() as tape: # Forward pass: render the image. path.points = points_n * 256 path.stroke_width = stroke_width_n * 100 path_group.stroke_color = stroke_color # Important to use a different seed every iteration, otherwise the result # would be biased. scene_args = pydiffvg.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(tf.constant(256), # width tf.constant(256), # height tf.constant(2), # num_samples_x tf.constant(2), # num_samples_y tf.constant(t+1), # seed, *scene_args) loss_value = tf.reduce_sum(tf.square(img - target)) print(f"loss_value: {loss_value}") pydiffvg.imwrite(img, 'results/single_stroke_tf/iter_{}.png'.format(t)) grads = tape.gradient(loss_value, [points_n, stroke_width_n, stroke_color]) print(grads) optimizer.apply_gradients(zip(grads, [points_n, stroke_width_n, stroke_color])) # Render the final result. path.points = points_n * 256 path_group.stroke_color = stroke_color scene_args = pydiffvg.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(tf.constant(256), # width tf.constant(256), # height tf.constant(2), # num_samples_x tf.constant(2), # num_samples_y tf.constant(101), # seed *scene_args) # Save the images and differences. pydiffvg.imwrite(img, 'results/single_stroke_tf/final.png') # Convert the intermediate renderings to a video. from subprocess import call call(["ffmpeg", "-framerate", "24", "-i", "results/single_stroke_tf/iter_%d.png", "-vb", "20M", "results/single_curve_tf/out.mp4"])