110 lines
3.9 KiB
Python
110 lines
3.9 KiB
Python
import pydiffvg
|
|
import torch
|
|
import skimage
|
|
import numpy as np
|
|
|
|
# Use GPU if available
|
|
pydiffvg.set_use_gpu(torch.cuda.is_available())
|
|
|
|
canvas_width, canvas_height = 256, 256
|
|
ellipse = pydiffvg.Ellipse(radius = torch.tensor([60.0, 30.0]),
|
|
center = torch.tensor([128.0, 128.0]))
|
|
shapes = [ellipse]
|
|
ellipse_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]),
|
|
fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0]))
|
|
shape_groups = [ellipse_group]
|
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
|
canvas_width, canvas_height, shapes, shape_groups)
|
|
|
|
render = pydiffvg.RenderFunction.apply
|
|
img = render(256, # width
|
|
256, # height
|
|
2, # num_samples_x
|
|
2, # num_samples_y
|
|
0, # seed
|
|
None, # background_image
|
|
*scene_args)
|
|
# The output image is in linear RGB space. Do Gamma correction before saving the image.
|
|
pydiffvg.imwrite(img.cpu(), 'results/single_ellipse/target.png', gamma=2.2)
|
|
target = img.clone()
|
|
|
|
# Move the ellipse to produce initial guess
|
|
# normalize radius & center for easier learning rate
|
|
radius_n = torch.tensor([20.0 / 256.0, 40.0 / 256.0], requires_grad=True)
|
|
center_n = torch.tensor([108.0 / 256.0, 138.0 / 256.0], requires_grad=True)
|
|
color = torch.tensor([0.3, 0.2, 0.8, 1.0], requires_grad=True)
|
|
ellipse.radius = radius_n * 256
|
|
ellipse.center = center_n * 256
|
|
ellipse_group.fill_color = color
|
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
|
canvas_width, canvas_height, shapes, shape_groups)
|
|
img = render(256, # width
|
|
256, # height
|
|
2, # num_samples_x
|
|
2, # num_samples_y
|
|
1, # seed
|
|
None, # background_image
|
|
*scene_args)
|
|
pydiffvg.imwrite(img.cpu(), 'results/single_ellipse/init.png', gamma=2.2)
|
|
|
|
# Optimize for radius & center
|
|
optimizer = torch.optim.Adam([radius_n, center_n, color], lr=1e-2)
|
|
# Run 50 Adam iterations.
|
|
for t in range(50):
|
|
print('iteration:', t)
|
|
optimizer.zero_grad()
|
|
# Forward pass: render the image.
|
|
ellipse.radius = radius_n * 256
|
|
ellipse.center = center_n * 256
|
|
ellipse_group.fill_color = color
|
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
|
canvas_width, canvas_height, shapes, shape_groups)
|
|
img = render(256, # width
|
|
256, # height
|
|
2, # num_samples_x
|
|
2, # num_samples_y
|
|
t+1, # seed
|
|
None, # background_image
|
|
*scene_args)
|
|
# Save the intermediate render.
|
|
pydiffvg.imwrite(img.cpu(), 'results/single_ellipse/iter_{}.png'.format(t), gamma=2.2)
|
|
# Compute the loss function. Here it is L2.
|
|
loss = (img - target).pow(2).sum()
|
|
print('loss:', loss.item())
|
|
|
|
# Backpropagate the gradients.
|
|
loss.backward()
|
|
# Print the gradients
|
|
print('radius.grad:', radius_n.grad)
|
|
print('center.grad:', center_n.grad)
|
|
print('color.grad:', color.grad)
|
|
|
|
# Take a gradient descent step.
|
|
optimizer.step()
|
|
# Print the current params.
|
|
print('radius:', ellipse.radius)
|
|
print('center:', ellipse.center)
|
|
print('color:', ellipse_group.fill_color)
|
|
|
|
# Render the final result.
|
|
ellipse.radius = radius_n * 256
|
|
ellipse.center = center_n * 256
|
|
ellipse_group.fill_color = color
|
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
|
canvas_width, canvas_height, shapes, shape_groups)
|
|
img = render(256, # width
|
|
256, # height
|
|
2, # num_samples_x
|
|
2, # num_samples_y
|
|
52, # seed
|
|
None, # background_image
|
|
*scene_args)
|
|
# Save the images and differences.
|
|
pydiffvg.imwrite(img.cpu(), 'results/single_ellipse/final.png')
|
|
|
|
# Convert the intermediate renderings to a video.
|
|
from subprocess import call
|
|
call(["ffmpeg", "-framerate", "24", "-i",
|
|
"results/single_ellipse/iter_%d.png", "-vb", "20M",
|
|
"results/single_ellipse/out.mp4"])
|