109 lines
3.9 KiB
Python
109 lines
3.9 KiB
Python
import pydiffvg
|
|
import torch
|
|
import skimage
|
|
import numpy as np
|
|
|
|
# Use GPU if available
|
|
pydiffvg.set_use_gpu(torch.cuda.is_available())
|
|
|
|
canvas_width, canvas_height = 256, 256
|
|
# https://www.w3schools.com/graphics/svg_polygon.asp
|
|
points = torch.tensor([[120.0, 30.0],
|
|
[ 60.0, 218.0],
|
|
[210.0, 98.0],
|
|
[ 30.0, 98.0],
|
|
[180.0, 218.0]])
|
|
polygon = pydiffvg.Polygon(points = points, is_closed = True)
|
|
shapes = [polygon]
|
|
polygon_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]),
|
|
fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0]))
|
|
shape_groups = [polygon_group]
|
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
|
canvas_width, canvas_height, shapes, shape_groups)
|
|
|
|
render = pydiffvg.RenderFunction.apply
|
|
img = render(256, # width
|
|
256, # height
|
|
2, # num_samples_x
|
|
2, # num_samples_y
|
|
0, # seed
|
|
*scene_args)
|
|
# The output image is in linear RGB space. Do Gamma correction before saving the image.
|
|
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/target.png', gamma=2.2)
|
|
target = img.clone()
|
|
|
|
# Move the polygon to produce initial guess
|
|
# normalize points for easier learning rate
|
|
points_n = torch.tensor([[140.0 / 256.0, 20.0 / 256.0],
|
|
[ 65.0 / 256.0, 228.0 / 256.0],
|
|
[215.0 / 256.0, 100.0 / 256.0],
|
|
[ 35.0 / 256.0, 90.0 / 256.0],
|
|
[160.0 / 256.0, 208.0 / 256.0]], requires_grad=True)
|
|
color = torch.tensor([0.3, 0.2, 0.5, 1.0], requires_grad=True)
|
|
polygon.points = points_n * 256
|
|
polygon_group.color = color
|
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
|
canvas_width, canvas_height, shapes, shape_groups)
|
|
img = render(256, # width
|
|
256, # height
|
|
2, # num_samples_x
|
|
2, # num_samples_y
|
|
1, # seed
|
|
*scene_args)
|
|
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/init.png', gamma=2.2)
|
|
|
|
# Optimize for radius & center
|
|
optimizer = torch.optim.Adam([points_n, color], lr=1e-2)
|
|
# Run 100 Adam iterations.
|
|
for t in range(100):
|
|
print('iteration:', t)
|
|
optimizer.zero_grad()
|
|
# Forward pass: render the image.
|
|
polygon.points = points_n * 256
|
|
polygon_group.color = color
|
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
|
canvas_width, canvas_height, shapes, shape_groups)
|
|
img = render(256, # width
|
|
256, # height
|
|
2, # num_samples_x
|
|
2, # num_samples_y
|
|
t+1, # seed
|
|
*scene_args)
|
|
# Save the intermediate render.
|
|
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/iter_{}.png'.format(t), gamma=2.2)
|
|
# Compute the loss function. Here it is L2.
|
|
loss = (img - target).pow(2).sum()
|
|
print('loss:', loss.item())
|
|
|
|
# Backpropagate the gradients.
|
|
loss.backward()
|
|
# Print the gradients
|
|
print('points_n.grad:', points_n.grad)
|
|
print('color.grad:', color.grad)
|
|
|
|
# Take a gradient descent step.
|
|
optimizer.step()
|
|
# Print the current params.
|
|
print('points:', polygon.points)
|
|
print('color:', polygon_group.fill_color)
|
|
|
|
# Render the final result.
|
|
polygon.points = points_n * 256
|
|
polygon_group.color = color
|
|
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
|
canvas_width, canvas_height, shapes, shape_groups)
|
|
img = render(256, # width
|
|
256, # height
|
|
2, # num_samples_x
|
|
2, # num_samples_y
|
|
102, # seed
|
|
*scene_args)
|
|
# Save the images and differences.
|
|
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/final.png')
|
|
|
|
# Convert the intermediate renderings to a video.
|
|
from subprocess import call
|
|
call(["ffmpeg", "-framerate", "24", "-i",
|
|
"results/single_polygon/iter_%d.png", "-vb", "20M",
|
|
"results/single_polygon/out.mp4"])
|