/*! * PixiJS - v8.4.1 * Compiled Thu, 19 Sep 2024 10:28:58 UTC * * PixiJS is licensed under the MIT License. * http://www.opensource.org/licenses/mit-license */ this.PIXI = this.PIXI || {}; var math_extras_js = (function (exports) { 'use strict'; "use strict"; const pointExtraMixins = { /** * Adds `other` to `this` point and outputs into `outPoint` or a new Point. * * _Note: Only available with **pixi.js/math-extras**._ * @method add * @memberof maths.Point# * @param {maths.PointData} other - The point to add to `this`. * @param {maths.PointData} [outPoint] - A Point-like object in which to store the value, * optional (otherwise will create a new Point). * @returns {PointData} The `outPoint` reference or a new Point, with the result of the addition. */ /** * Adds `other` to `this` point and outputs into `outPoint` or a new Point. * * _Note: Only available with **pixi.js/math-extras**._ * @method add * @memberof maths.ObservablePoint# * @param {maths.PointData} other - The point to add to `this`. * @param {maths.PointData} [outPoint] - A Point-like object in which to store the value, * optional (otherwise will create a new Point). * @returns {PointData} The `outPoint` reference or a new Point, with the result of the addition. */ add(other, outPoint) { if (!outPoint) { outPoint = new PIXI.Point(); } outPoint.x = this.x + other.x; outPoint.y = this.y + other.y; return outPoint; }, /** * Subtracts `other` from `this` point and outputs into `outPoint` or a new Point. * * _Note: Only available with **pixi.js/math-extras**._ * @method subtract * @memberof maths.Point# * @param {maths.PointData} other - The point to subtract to `this`. * @param {maths.PointData} [outPoint] - A Point-like object in which to store the value, * optional (otherwise will create a new Point). * @returns {PointData} The `outPoint` reference or a new Point, with the result of the subtraction. */ /** * Subtracts `other` from `this` point and outputs into `outPoint` or a new Point. * * _Note: Only available with **pixi.js/math-extras**._ * @method subtract * @memberof maths.ObservablePoint# * @param {maths.PointData} other - The point to subtract to `this`. * @param {maths.PointData} [outPoint] - A Point-like object in which to store the value, * optional (otherwise will create a new Point). * @returns {PointData} The `outPoint` reference or a new Point, with the result of the subtraction. */ subtract(other, outPoint) { if (!outPoint) { outPoint = new PIXI.Point(); } outPoint.x = this.x - other.x; outPoint.y = this.y - other.y; return outPoint; }, /** * Multiplies component-wise `other` and `this` points and outputs into `outPoint` or a new Point. * * _Note: Only available with **pixi.js/math-extras**._ * @method multiply * @memberof maths.Point# * @param {maths.PointData} other - The point to multiply with `this`. * @param {maths.PointData} [outPoint] - A Point-like object in which to store the value, * optional (otherwise will create a new Point). * @returns {PointData} The `outPoint` reference or a new Point, with the component-wise multiplication. */ /** * Multiplies component-wise `other` and `this` points and outputs into `outPoint` or a new Point. * * _Note: Only available with **pixi.js/math-extras**._ * @method multiply * @memberof maths.ObservablePoint# * @param {maths.PointData} other - The point to multiply with `this`. * @param {maths.PointData} [outPoint] - A Point-like object in which to store the value, * optional (otherwise will create a new Point). * @returns {PointData} The `outPoint` reference or a new Point, with the component-wise multiplication. */ multiply(other, outPoint) { if (!outPoint) { outPoint = new PIXI.Point(); } outPoint.x = this.x * other.x; outPoint.y = this.y * other.y; return outPoint; }, /** * Multiplies each component of `this` point with the number `scalar` and outputs into `outPoint` or a new Point. * * _Note: Only available with **pixi.js/math-extras**._ * @method multiplyScalar * @memberof maths.Point# * @param {number} scalar - The number to multiply both components of `this`. * @param {maths.PointData} [outPoint] - A Point-like object in which to store the value, * optional (otherwise will create a new Point). * @returns {PointData} The `outPoint` reference or a new Point, with the multiplication. */ /** * Multiplies each component of `this` point with the number `scalar` and outputs into `outPoint` or a new Point. * * _Note: Only available with **pixi.js/math-extras**._ * @method multiplyScalar * @memberof maths.ObservablePoint# * @param {number} scalar - The number to multiply both components of `this`. * @param {maths.PointData} [outPoint] - A Point-like object in which to store the value, * optional (otherwise will create a new Point). * @returns {PointData} The `outPoint` reference or a new Point, with the multiplication. */ multiplyScalar(scalar, outPoint) { if (!outPoint) { outPoint = new PIXI.Point(); } outPoint.x = this.x * scalar; outPoint.y = this.y * scalar; return outPoint; }, /** * Computes the dot product of `other` with `this` point. * The dot product is the sum of the products of the corresponding components of two vectors. * * _Note: Only available with **pixi.js/math-extras**._ * @method dot * @memberof maths.Point# * @param {maths.PointData} other - The other point to calculate the dot product with `this`. * @returns {number} The result of the dot product. This is an scalar value. */ /** * Computes the dot product of `other` with `this` point. * The dot product is the sum of the products of the corresponding components of two vectors. * * _Note: Only available with **pixi.js/math-extras**._ * @method dot * @memberof maths.ObservablePoint# * @param {maths.PointData} other - The other point to calculate the dot product with `this`. * @returns {number} The result of the dot product. This is an scalar value. */ dot(other) { return this.x * other.x + this.y * other.y; }, /** * Computes the cross product of `other` with `this` point. * Given two linearly independent R3 vectors a and b, the cross product, a × b (read "a cross b"), * is a vector that is perpendicular to both a and b, and thus normal to the plane containing them. * While cross product only exists on 3D space, we can assume the z component of 2D to be zero and * the result becomes a vector that will only have magnitude on the z axis. * * This function returns the z component of the cross product of the two points. * * _Note: Only available with **pixi.js/math-extras**._ * @method cross * @memberof maths.Point# * @param {maths.PointData} other - The other point to calculate the cross product with `this`. * @returns {number} The z component of the result of the cross product. */ /** * Computes the cross product of `other` with `this` point. * Given two linearly independent R3 vectors a and b, the cross product, a × b (read "a cross b"), * is a vector that is perpendicular to both a and b, and thus normal to the plane containing them. * While cross product only exists on 3D space, we can assume the z component of 2D to be zero and * the result becomes a vector that will only have magnitude on the z axis. * * This function returns the z component of the cross product of the two points. * * _Note: Only available with **pixi.js/math-extras**._ * @method cross * @memberof maths.ObservablePoint# * @param {maths.PointData} other - The other point to calculate the cross product with `this`. * @returns {number} The z component of the result of the cross product. */ cross(other) { return this.x * other.y - this.y * other.x; }, /** * Computes a normalized version of `this` point. * * A normalized vector is a vector of magnitude (length) 1 * * _Note: Only available with **pixi.js/math-extras**._ * @method normalize * @memberof maths.Point# * @param {maths.PointData} [outPoint] - A Point-like object in which to store the value, * optional (otherwise will create a new Point). * @returns {PointData} The normalized point. */ /** * Computes a normalized version of `this` point. * * A normalized vector is a vector of magnitude (length) 1 * * _Note: Only available with **pixi.js/math-extras**._ * @method normalize * @memberof maths.ObservablePoint# * @param {maths.PointData} [outPoint] - A Point-like object in which to store the value, * optional (otherwise will create a new Point). * @returns {PointData} The normalized point. */ normalize(outPoint) { if (!outPoint) { outPoint = new PIXI.Point(); } const magnitude = Math.sqrt(this.x * this.x + this.y * this.y); outPoint.x = this.x / magnitude; outPoint.y = this.y / magnitude; return outPoint; }, /** * Computes the magnitude of this point (Euclidean distance from 0, 0). * * Defined as the square root of the sum of the squares of each component. * * _Note: Only available with **pixi.js/math-extras**._ * @method magnitude * @memberof maths.Point# * @returns {number} The magnitude (length) of the vector. */ /** * Computes the magnitude of this point (Euclidean distance from 0, 0). * * Defined as the square root of the sum of the squares of each component. * * _Note: Only available with **pixi.js/math-extras**._ * @method magnitude * @memberof maths.ObservablePoint# * @returns {number} The magnitude (length) of the vector. */ magnitude() { return Math.sqrt(this.x * this.x + this.y * this.y); }, /** * Computes the square magnitude of this point. * If you are comparing the lengths of vectors, you should compare the length squared instead * as it is slightly more efficient to calculate. * * Defined as the sum of the squares of each component. * * _Note: Only available with **pixi.js/math-extras**._ * @method magnitudeSquared * @memberof maths.Point# * @returns {number} The magnitude squared (length squared) of the vector. */ /** * Computes the square magnitude of this point. * If you are comparing the lengths of vectors, you should compare the length squared instead * as it is slightly more efficient to calculate. * * Defined as the sum of the squares of each component. * * _Note: Only available with **pixi.js/math-extras**._ * @method magnitudeSquared * @memberof maths.ObservablePoint# * @returns {number} The magnitude squared (length squared) of the vector. */ magnitudeSquared() { return this.x * this.x + this.y * this.y; }, /** * Computes vector projection of `this` on `onto`. * * Imagine a light source, parallel to `onto`, above `this`. * The light would cast rays perpendicular to `onto`. * `this.project(onto)` is the shadow cast by `this` on the line defined by `onto` . * * _Note: Only available with **pixi.js/math-extras**._ * @method project * @memberof maths.Point# * @param {maths.PointData} onto - A non zero vector describing a line on which to project `this`. * @param {maths.PointData} [outPoint] - A Point-like object in which to store the value, * optional (otherwise will create a new Point). * @returns {PointData} The `this` on `onto` projection. */ /** * Computes vector projection of `this` on `onto`. * * Imagine a light source, parallel to `onto`, above `this`. * The light would cast rays perpendicular to `onto`. * `this.project(onto)` is the shadow cast by `this` on the line defined by `onto` . * * _Note: Only available with **pixi.js/math-extras**._ * @method project * @memberof maths.ObservablePoint# * @param {maths.PointData} onto - A non zero vector describing a line on which to project `this`. * @param {maths.PointData} [outPoint] - A Point-like object in which to store the value, * optional (otherwise will create a new Point). * @returns {PointData} The `this` on `onto` projection. */ project(onto, outPoint) { if (!outPoint) { outPoint = new PIXI.Point(); } const normalizedScalarProjection = (this.x * onto.x + this.y * onto.y) / (onto.x * onto.x + onto.y * onto.y); outPoint.x = onto.x * normalizedScalarProjection; outPoint.y = onto.y * normalizedScalarProjection; return outPoint; }, /** * Reflects `this` vector off of a plane orthogonal to `normal`. * `normal` is not normalized during this process. Consider normalizing your `normal` before use. * * Imagine a light source bouncing onto a mirror. * `this` vector is the light and `normal` is a vector perpendicular to the mirror. * `this.reflect(normal)` is the reflection of `this` on that mirror. * * _Note: Only available with **pixi.js/math-extras**._ * @method reflect * @memberof maths.Point# * @param {maths.PointData} normal - The normal vector of your reflecting plane. * @param {maths.PointData} [outPoint] - A Point-like object in which to store the value, * optional (otherwise will create a new Point). * @returns {PointData} The reflection of `this` on your reflecting plane. */ /** * Reflects `this` vector off of a plane orthogonal to `normal`. * `normal` is not normalized during this process. Consider normalizing your `normal` before use. * * Imagine a light source bouncing onto a mirror. * `this` vector is the light and `normal` is a vector perpendicular to the mirror. * `this.reflect(normal)` is the reflection of `this` on that mirror. * * _Note: Only available with **pixi.js/math-extras**._ * @method reflect * @memberof maths.ObservablePoint# * @param {maths.PointData} normal - The normal vector of your reflecting plane. * @param {maths.PointData} [outPoint] - A Point-like object in which to store the value, * optional (otherwise will create a new Point). * @returns {PointData} The reflection of `this` on your reflecting plane. */ reflect(normal, outPoint) { if (!outPoint) { outPoint = new PIXI.Point(); } const dotProduct = this.x * normal.x + this.y * normal.y; outPoint.x = this.x - 2 * dotProduct * normal.x; outPoint.y = this.y - 2 * dotProduct * normal.y; return outPoint; } }; "use strict"; const rectangleExtraMixins = { /** * Determines whether the `other` Rectangle is contained within `this` Rectangle object. * Rectangles that occupy the same space are considered to be containing each other. * Rectangles without area (width or height equal to zero) can't contain anything, * not even other arealess rectangles. * * _Note: Only available with **pixi.js/math-extras**._ * @method containsRect * @memberof maths.Rectangle# * @param {Rectangle} other - The Rectangle to fit inside `this`. * @returns {boolean} A value of `true` if `this` Rectangle contains `other`; otherwise `false`. */ containsRect(other) { if (other.width <= 0 || other.height <= 0) { return other.x > this.x && other.y > this.y && other.right < this.right && other.bottom < this.bottom; } return other.x >= this.x && other.y >= this.y && other.right <= this.right && other.bottom <= this.bottom; }, /** * Accepts `other` Rectangle and returns true if the given Rectangle is equal to `this` Rectangle. * * _Note: Only available with **pixi.js/math-extras**._ * @method equals * @memberof maths.Rectangle# * @param {Rectangle} other - The Rectangle to compare with `this` * @returns {boolean} Returns true if all `x`, `y`, `width`, and `height` are equal. */ equals(other) { if (other === this) { return true; } return other && this.x === other.x && this.y === other.y && this.width === other.width && this.height === other.height; }, /** * If the area of the intersection between the Rectangles `other` and `this` is not zero, * returns the area of intersection as a Rectangle object. Otherwise, return an empty Rectangle * with its properties set to zero. * Rectangles without area (width or height equal to zero) can't intersect or be intersected * and will always return an empty rectangle with its properties set to zero. * * _Note: Only available with **pixi.js/math-extras**._ * @method intersection * @memberof maths.Rectangle# * @param {Rectangle} other - The Rectangle to intersect with `this`. * @param {Rectangle} [outRect] - A Rectangle object in which to store the value, * optional (otherwise will create a new Rectangle). * @returns {Rectangle} The intersection of `this` and `other`. */ intersection(other, outRect) { if (!outRect) { outRect = new PIXI.Rectangle(); } const x0 = this.x < other.x ? other.x : this.x; const x1 = this.right > other.right ? other.right : this.right; if (x1 <= x0) { outRect.x = outRect.y = outRect.width = outRect.height = 0; return outRect; } const y0 = this.y < other.y ? other.y : this.y; const y1 = this.bottom > other.bottom ? other.bottom : this.bottom; if (y1 <= y0) { outRect.x = outRect.y = outRect.width = outRect.height = 0; return outRect; } outRect.x = x0; outRect.y = y0; outRect.width = x1 - x0; outRect.height = y1 - y0; return outRect; }, /** * Adds `this` and `other` Rectangles together to create a new Rectangle object filling * the horizontal and vertical space between the two rectangles. * * _Note: Only available with **pixi.js/math-extras**._ * @method union * @memberof maths.Rectangle# * @param {Rectangle} other - The Rectangle to unite with `this`. * @param {Rectangle} [outRect] - A Rectangle object in which to store the value, * optional (otherwise will create a new Rectangle). * @returns {Rectangle} The union of `this` and `other`. */ union(other, outRect) { if (!outRect) { outRect = new PIXI.Rectangle(); } const x1 = Math.min(this.x, other.x); const x2 = Math.max(this.x + this.width, other.x + other.width); const y1 = Math.min(this.y, other.y); const y2 = Math.max(this.y + this.height, other.y + other.height); outRect.x = x1; outRect.y = y1; outRect.width = x2 - x1; outRect.height = y2 - y1; return outRect; } }; "use strict"; Object.assign(PIXI.Point.prototype, pointExtraMixins); Object.assign(PIXI.ObservablePoint.prototype, pointExtraMixins); Object.assign(PIXI.Rectangle.prototype, rectangleExtraMixins); "use strict"; function floatEqual(a, b, epsilon = Number.EPSILON) { if (a === b) { return true; } const diff = Math.abs(a - b); return diff < epsilon; } function genericLineIntersection(aStart, aEnd, bStart, bEnd, isLine, outPoint) { if (!outPoint) { outPoint = new PIXI.Point(); } const dxa = aEnd.x - aStart.x; const dya = aEnd.y - aStart.y; const dxb = bEnd.x - bStart.x; const dyb = bEnd.y - bStart.y; const denominator = dyb * dxa - dxb * dya; if (floatEqual(denominator, 0)) { outPoint.x = NaN; outPoint.y = NaN; return outPoint; } const ua = (dxb * (aStart.y - bStart.y) - dyb * (aStart.x - bStart.x)) / denominator; const ub = (dxa * (aStart.y - bStart.y) - dya * (aStart.x - bStart.x)) / denominator; if (!isLine && (ua < 0 || ua > 1 || ub < 0 || ub > 1)) { outPoint.x = NaN; outPoint.y = NaN; return outPoint; } outPoint.x = aStart.x + ua * dxa; outPoint.y = bStart.y + ub * dyb; return outPoint; } function lineIntersection(aStart, aEnd, bStart, bEnd, outPoint) { return genericLineIntersection(aStart, aEnd, bStart, bEnd, true, outPoint); } function segmentIntersection(aStart, aEnd, bStart, bEnd, outPoint) { return genericLineIntersection(aStart, aEnd, bStart, bEnd, false, outPoint); } "use strict"; "use strict"; exports.floatEqual = floatEqual; exports.lineIntersection = lineIntersection; exports.pointExtraMixins = pointExtraMixins; exports.rectangleExtraMixins = rectangleExtraMixins; exports.segmentIntersection = segmentIntersection; return exports; })({}); Object.assign(this.PIXI, math_extras_js); //# sourceMappingURL=math-extras.js.map