import { PI_2 } from '../misc/const.mjs'; import { Point } from '../point/Point.mjs'; "use strict"; class Matrix { /** * @param a - x scale * @param b - y skew * @param c - x skew * @param d - y scale * @param tx - x translation * @param ty - y translation */ constructor(a = 1, b = 0, c = 0, d = 1, tx = 0, ty = 0) { /** An array of the current matrix. Only populated when `toArray` is called */ this.array = null; this.a = a; this.b = b; this.c = c; this.d = d; this.tx = tx; this.ty = ty; } /** * Creates a Matrix object based on the given array. The Element to Matrix mapping order is as follows: * * a = array[0] * b = array[1] * c = array[3] * d = array[4] * tx = array[2] * ty = array[5] * @param array - The array that the matrix will be populated from. */ fromArray(array) { this.a = array[0]; this.b = array[1]; this.c = array[3]; this.d = array[4]; this.tx = array[2]; this.ty = array[5]; } /** * Sets the matrix properties. * @param a - Matrix component * @param b - Matrix component * @param c - Matrix component * @param d - Matrix component * @param tx - Matrix component * @param ty - Matrix component * @returns This matrix. Good for chaining method calls. */ set(a, b, c, d, tx, ty) { this.a = a; this.b = b; this.c = c; this.d = d; this.tx = tx; this.ty = ty; return this; } /** * Creates an array from the current Matrix object. * @param transpose - Whether we need to transpose the matrix or not * @param [out=new Float32Array(9)] - If provided the array will be assigned to out * @returns The newly created array which contains the matrix */ toArray(transpose, out) { if (!this.array) { this.array = new Float32Array(9); } const array = out || this.array; if (transpose) { array[0] = this.a; array[1] = this.b; array[2] = 0; array[3] = this.c; array[4] = this.d; array[5] = 0; array[6] = this.tx; array[7] = this.ty; array[8] = 1; } else { array[0] = this.a; array[1] = this.c; array[2] = this.tx; array[3] = this.b; array[4] = this.d; array[5] = this.ty; array[6] = 0; array[7] = 0; array[8] = 1; } return array; } /** * Get a new position with the current transformation applied. * Can be used to go from a child's coordinate space to the world coordinate space. (e.g. rendering) * @param pos - The origin * @param {Point} [newPos] - The point that the new position is assigned to (allowed to be same as input) * @returns {Point} The new point, transformed through this matrix */ apply(pos, newPos) { newPos = newPos || new Point(); const x = pos.x; const y = pos.y; newPos.x = this.a * x + this.c * y + this.tx; newPos.y = this.b * x + this.d * y + this.ty; return newPos; } /** * Get a new position with the inverse of the current transformation applied. * Can be used to go from the world coordinate space to a child's coordinate space. (e.g. input) * @param pos - The origin * @param {Point} [newPos] - The point that the new position is assigned to (allowed to be same as input) * @returns {Point} The new point, inverse-transformed through this matrix */ applyInverse(pos, newPos) { newPos = newPos || new Point(); const a = this.a; const b = this.b; const c = this.c; const d = this.d; const tx = this.tx; const ty = this.ty; const id = 1 / (a * d + c * -b); const x = pos.x; const y = pos.y; newPos.x = d * id * x + -c * id * y + (ty * c - tx * d) * id; newPos.y = a * id * y + -b * id * x + (-ty * a + tx * b) * id; return newPos; } /** * Translates the matrix on the x and y. * @param x - How much to translate x by * @param y - How much to translate y by * @returns This matrix. Good for chaining method calls. */ translate(x, y) { this.tx += x; this.ty += y; return this; } /** * Applies a scale transformation to the matrix. * @param x - The amount to scale horizontally * @param y - The amount to scale vertically * @returns This matrix. Good for chaining method calls. */ scale(x, y) { this.a *= x; this.d *= y; this.c *= x; this.b *= y; this.tx *= x; this.ty *= y; return this; } /** * Applies a rotation transformation to the matrix. * @param angle - The angle in radians. * @returns This matrix. Good for chaining method calls. */ rotate(angle) { const cos = Math.cos(angle); const sin = Math.sin(angle); const a1 = this.a; const c1 = this.c; const tx1 = this.tx; this.a = a1 * cos - this.b * sin; this.b = a1 * sin + this.b * cos; this.c = c1 * cos - this.d * sin; this.d = c1 * sin + this.d * cos; this.tx = tx1 * cos - this.ty * sin; this.ty = tx1 * sin + this.ty * cos; return this; } /** * Appends the given Matrix to this Matrix. * @param matrix - The matrix to append. * @returns This matrix. Good for chaining method calls. */ append(matrix) { const a1 = this.a; const b1 = this.b; const c1 = this.c; const d1 = this.d; this.a = matrix.a * a1 + matrix.b * c1; this.b = matrix.a * b1 + matrix.b * d1; this.c = matrix.c * a1 + matrix.d * c1; this.d = matrix.c * b1 + matrix.d * d1; this.tx = matrix.tx * a1 + matrix.ty * c1 + this.tx; this.ty = matrix.tx * b1 + matrix.ty * d1 + this.ty; return this; } /** * Appends two matrix's and sets the result to this matrix. AB = A * B * @param a - The matrix to append. * @param b - The matrix to append. * @returns This matrix. Good for chaining method calls. */ appendFrom(a, b) { const a1 = a.a; const b1 = a.b; const c1 = a.c; const d1 = a.d; const tx = a.tx; const ty = a.ty; const a2 = b.a; const b2 = b.b; const c2 = b.c; const d2 = b.d; this.a = a1 * a2 + b1 * c2; this.b = a1 * b2 + b1 * d2; this.c = c1 * a2 + d1 * c2; this.d = c1 * b2 + d1 * d2; this.tx = tx * a2 + ty * c2 + b.tx; this.ty = tx * b2 + ty * d2 + b.ty; return this; } /** * Sets the matrix based on all the available properties * @param x - Position on the x axis * @param y - Position on the y axis * @param pivotX - Pivot on the x axis * @param pivotY - Pivot on the y axis * @param scaleX - Scale on the x axis * @param scaleY - Scale on the y axis * @param rotation - Rotation in radians * @param skewX - Skew on the x axis * @param skewY - Skew on the y axis * @returns This matrix. Good for chaining method calls. */ setTransform(x, y, pivotX, pivotY, scaleX, scaleY, rotation, skewX, skewY) { this.a = Math.cos(rotation + skewY) * scaleX; this.b = Math.sin(rotation + skewY) * scaleX; this.c = -Math.sin(rotation - skewX) * scaleY; this.d = Math.cos(rotation - skewX) * scaleY; this.tx = x - (pivotX * this.a + pivotY * this.c); this.ty = y - (pivotX * this.b + pivotY * this.d); return this; } /** * Prepends the given Matrix to this Matrix. * @param matrix - The matrix to prepend * @returns This matrix. Good for chaining method calls. */ prepend(matrix) { const tx1 = this.tx; if (matrix.a !== 1 || matrix.b !== 0 || matrix.c !== 0 || matrix.d !== 1) { const a1 = this.a; const c1 = this.c; this.a = a1 * matrix.a + this.b * matrix.c; this.b = a1 * matrix.b + this.b * matrix.d; this.c = c1 * matrix.a + this.d * matrix.c; this.d = c1 * matrix.b + this.d * matrix.d; } this.tx = tx1 * matrix.a + this.ty * matrix.c + matrix.tx; this.ty = tx1 * matrix.b + this.ty * matrix.d + matrix.ty; return this; } /** * Decomposes the matrix (x, y, scaleX, scaleY, and rotation) and sets the properties on to a transform. * @param transform - The transform to apply the properties to. * @returns The transform with the newly applied properties */ decompose(transform) { const a = this.a; const b = this.b; const c = this.c; const d = this.d; const pivot = transform.pivot; const skewX = -Math.atan2(-c, d); const skewY = Math.atan2(b, a); const delta = Math.abs(skewX + skewY); if (delta < 1e-5 || Math.abs(PI_2 - delta) < 1e-5) { transform.rotation = skewY; transform.skew.x = transform.skew.y = 0; } else { transform.rotation = 0; transform.skew.x = skewX; transform.skew.y = skewY; } transform.scale.x = Math.sqrt(a * a + b * b); transform.scale.y = Math.sqrt(c * c + d * d); transform.position.x = this.tx + (pivot.x * a + pivot.y * c); transform.position.y = this.ty + (pivot.x * b + pivot.y * d); return transform; } /** * Inverts this matrix * @returns This matrix. Good for chaining method calls. */ invert() { const a1 = this.a; const b1 = this.b; const c1 = this.c; const d1 = this.d; const tx1 = this.tx; const n = a1 * d1 - b1 * c1; this.a = d1 / n; this.b = -b1 / n; this.c = -c1 / n; this.d = a1 / n; this.tx = (c1 * this.ty - d1 * tx1) / n; this.ty = -(a1 * this.ty - b1 * tx1) / n; return this; } /** Checks if this matrix is an identity matrix */ isIdentity() { return this.a === 1 && this.b === 0 && this.c === 0 && this.d === 1 && this.tx === 0 && this.ty === 0; } /** * Resets this Matrix to an identity (default) matrix. * @returns This matrix. Good for chaining method calls. */ identity() { this.a = 1; this.b = 0; this.c = 0; this.d = 1; this.tx = 0; this.ty = 0; return this; } /** * Creates a new Matrix object with the same values as this one. * @returns A copy of this matrix. Good for chaining method calls. */ clone() { const matrix = new Matrix(); matrix.a = this.a; matrix.b = this.b; matrix.c = this.c; matrix.d = this.d; matrix.tx = this.tx; matrix.ty = this.ty; return matrix; } /** * Changes the values of the given matrix to be the same as the ones in this matrix * @param matrix - The matrix to copy to. * @returns The matrix given in parameter with its values updated. */ copyTo(matrix) { matrix.a = this.a; matrix.b = this.b; matrix.c = this.c; matrix.d = this.d; matrix.tx = this.tx; matrix.ty = this.ty; return matrix; } /** * Changes the values of the matrix to be the same as the ones in given matrix * @param matrix - The matrix to copy from. * @returns this */ copyFrom(matrix) { this.a = matrix.a; this.b = matrix.b; this.c = matrix.c; this.d = matrix.d; this.tx = matrix.tx; this.ty = matrix.ty; return this; } /** * check to see if two matrices are the same * @param matrix - The matrix to compare to. */ equals(matrix) { return matrix.a === this.a && matrix.b === this.b && matrix.c === this.c && matrix.d === this.d && matrix.tx === this.tx && matrix.ty === this.ty; } toString() { return `[pixi.js:Matrix a=${this.a} b=${this.b} c=${this.c} d=${this.d} tx=${this.tx} ty=${this.ty}]`; } /** * A default (identity) matrix. * * This is a shared object, if you want to modify it consider creating a new `Matrix` * @readonly */ static get IDENTITY() { return identityMatrix.identity(); } /** * A static Matrix that can be used to avoid creating new objects. * Will always ensure the matrix is reset to identity when requested. * Use this object for fast but temporary calculations, as it may be mutated later on. * This is a different object to the `IDENTITY` object and so can be modified without changing `IDENTITY`. * @readonly */ static get shared() { return tempMatrix.identity(); } } const tempMatrix = new Matrix(); const identityMatrix = new Matrix(); export { Matrix }; //# sourceMappingURL=Matrix.mjs.map