{"version":3,"file":"Matrix.mjs","sources":["../../../src/maths/matrix/Matrix.ts"],"sourcesContent":["/* eslint-disable @typescript-eslint/no-use-before-define */\nimport { PI_2 } from '../misc/const';\nimport { Point } from '../point/Point';\n\nimport type { PointData } from '../point/PointData';\n\ninterface TransformableObject\n{\n position: PointData;\n scale: PointData;\n pivot: PointData;\n skew: PointData;\n rotation: number;\n}\n\n/**\n * A fast matrix for 2D transformations.\n * ```js\n * | a | c | tx|\n * | b | d | ty|\n * | 0 | 0 | 1 |\n * ```\n * @memberof maths\n */\nexport class Matrix\n{\n /** @default 1 */\n public a: number;\n\n /** @default 0 */\n public b: number;\n\n /** @default 0 */\n public c: number;\n\n /** @default 1 */\n public d: number;\n\n /** @default 0 */\n public tx: number;\n\n /** @default 0 */\n public ty: number;\n\n /** An array of the current matrix. Only populated when `toArray` is called */\n public array: Float32Array | null = null;\n\n /**\n * @param a - x scale\n * @param b - y skew\n * @param c - x skew\n * @param d - y scale\n * @param tx - x translation\n * @param ty - y translation\n */\n constructor(a = 1, b = 0, c = 0, d = 1, tx = 0, ty = 0)\n {\n this.a = a;\n this.b = b;\n this.c = c;\n this.d = d;\n this.tx = tx;\n this.ty = ty;\n }\n\n /**\n * Creates a Matrix object based on the given array. The Element to Matrix mapping order is as follows:\n *\n * a = array[0]\n * b = array[1]\n * c = array[3]\n * d = array[4]\n * tx = array[2]\n * ty = array[5]\n * @param array - The array that the matrix will be populated from.\n */\n public fromArray(array: number[]): void\n {\n this.a = array[0];\n this.b = array[1];\n this.c = array[3];\n this.d = array[4];\n this.tx = array[2];\n this.ty = array[5];\n }\n\n /**\n * Sets the matrix properties.\n * @param a - Matrix component\n * @param b - Matrix component\n * @param c - Matrix component\n * @param d - Matrix component\n * @param tx - Matrix component\n * @param ty - Matrix component\n * @returns This matrix. Good for chaining method calls.\n */\n public set(a: number, b: number, c: number, d: number, tx: number, ty: number): this\n {\n this.a = a;\n this.b = b;\n this.c = c;\n this.d = d;\n this.tx = tx;\n this.ty = ty;\n\n return this;\n }\n\n /**\n * Creates an array from the current Matrix object.\n * @param transpose - Whether we need to transpose the matrix or not\n * @param [out=new Float32Array(9)] - If provided the array will be assigned to out\n * @returns The newly created array which contains the matrix\n */\n public toArray(transpose?: boolean, out?: Float32Array): Float32Array\n {\n if (!this.array)\n {\n this.array = new Float32Array(9);\n }\n\n const array = out || this.array;\n\n if (transpose)\n {\n array[0] = this.a;\n array[1] = this.b;\n array[2] = 0;\n array[3] = this.c;\n array[4] = this.d;\n array[5] = 0;\n array[6] = this.tx;\n array[7] = this.ty;\n array[8] = 1;\n }\n else\n {\n array[0] = this.a;\n array[1] = this.c;\n array[2] = this.tx;\n array[3] = this.b;\n array[4] = this.d;\n array[5] = this.ty;\n array[6] = 0;\n array[7] = 0;\n array[8] = 1;\n }\n\n return array;\n }\n\n /**\n * Get a new position with the current transformation applied.\n * Can be used to go from a child's coordinate space to the world coordinate space. (e.g. rendering)\n * @param pos - The origin\n * @param {Point} [newPos] - The point that the new position is assigned to (allowed to be same as input)\n * @returns {Point} The new point, transformed through this matrix\n */\n public apply
(pos: PointData, newPos?: P): P\n {\n newPos = (newPos || new Point()) as P;\n\n const x = pos.x;\n const y = pos.y;\n\n newPos.x = (this.a * x) + (this.c * y) + this.tx;\n newPos.y = (this.b * x) + (this.d * y) + this.ty;\n\n return newPos;\n }\n\n /**\n * Get a new position with the inverse of the current transformation applied.\n * Can be used to go from the world coordinate space to a child's coordinate space. (e.g. input)\n * @param pos - The origin\n * @param {Point} [newPos] - The point that the new position is assigned to (allowed to be same as input)\n * @returns {Point} The new point, inverse-transformed through this matrix\n */\n public applyInverse
(pos: PointData, newPos?: P): P\n {\n newPos = (newPos || new Point()) as P;\n\n const a = this.a;\n const b = this.b;\n const c = this.c;\n const d = this.d;\n const tx = this.tx;\n const ty = this.ty;\n\n const id = 1 / ((a * d) + (c * -b));\n\n const x = pos.x;\n const y = pos.y;\n\n newPos.x = (d * id * x) + (-c * id * y) + (((ty * c) - (tx * d)) * id);\n newPos.y = (a * id * y) + (-b * id * x) + (((-ty * a) + (tx * b)) * id);\n\n return newPos;\n }\n\n /**\n * Translates the matrix on the x and y.\n * @param x - How much to translate x by\n * @param y - How much to translate y by\n * @returns This matrix. Good for chaining method calls.\n */\n public translate(x: number, y: number): this\n {\n this.tx += x;\n this.ty += y;\n\n return this;\n }\n\n /**\n * Applies a scale transformation to the matrix.\n * @param x - The amount to scale horizontally\n * @param y - The amount to scale vertically\n * @returns This matrix. Good for chaining method calls.\n */\n public scale(x: number, y: number): this\n {\n this.a *= x;\n this.d *= y;\n this.c *= x;\n this.b *= y;\n this.tx *= x;\n this.ty *= y;\n\n return this;\n }\n\n /**\n * Applies a rotation transformation to the matrix.\n * @param angle - The angle in radians.\n * @returns This matrix. Good for chaining method calls.\n */\n public rotate(angle: number): this\n {\n const cos = Math.cos(angle);\n const sin = Math.sin(angle);\n\n const a1 = this.a;\n const c1 = this.c;\n const tx1 = this.tx;\n\n this.a = (a1 * cos) - (this.b * sin);\n this.b = (a1 * sin) + (this.b * cos);\n this.c = (c1 * cos) - (this.d * sin);\n this.d = (c1 * sin) + (this.d * cos);\n this.tx = (tx1 * cos) - (this.ty * sin);\n this.ty = (tx1 * sin) + (this.ty * cos);\n\n return this;\n }\n\n /**\n * Appends the given Matrix to this Matrix.\n * @param matrix - The matrix to append.\n * @returns This matrix. Good for chaining method calls.\n */\n public append(matrix: Matrix): this\n {\n const a1 = this.a;\n const b1 = this.b;\n const c1 = this.c;\n const d1 = this.d;\n\n this.a = (matrix.a * a1) + (matrix.b * c1);\n this.b = (matrix.a * b1) + (matrix.b * d1);\n this.c = (matrix.c * a1) + (matrix.d * c1);\n this.d = (matrix.c * b1) + (matrix.d * d1);\n\n this.tx = (matrix.tx * a1) + (matrix.ty * c1) + this.tx;\n this.ty = (matrix.tx * b1) + (matrix.ty * d1) + this.ty;\n\n return this;\n }\n\n /**\n * Appends two matrix's and sets the result to this matrix. AB = A * B\n * @param a - The matrix to append.\n * @param b - The matrix to append.\n * @returns This matrix. Good for chaining method calls.\n */\n public appendFrom(a: Matrix, b: Matrix): this\n {\n const a1 = a.a;\n const b1 = a.b;\n const c1 = a.c;\n const d1 = a.d;\n const tx = a.tx;\n const ty = a.ty;\n\n const a2 = b.a;\n const b2 = b.b;\n const c2 = b.c;\n const d2 = b.d;\n\n this.a = (a1 * a2) + (b1 * c2);\n this.b = (a1 * b2) + (b1 * d2);\n this.c = (c1 * a2) + (d1 * c2);\n this.d = (c1 * b2) + (d1 * d2);\n this.tx = (tx * a2) + (ty * c2) + b.tx;\n this.ty = (tx * b2) + (ty * d2) + b.ty;\n\n return this;\n }\n\n /**\n * Sets the matrix based on all the available properties\n * @param x - Position on the x axis\n * @param y - Position on the y axis\n * @param pivotX - Pivot on the x axis\n * @param pivotY - Pivot on the y axis\n * @param scaleX - Scale on the x axis\n * @param scaleY - Scale on the y axis\n * @param rotation - Rotation in radians\n * @param skewX - Skew on the x axis\n * @param skewY - Skew on the y axis\n * @returns This matrix. Good for chaining method calls.\n */\n public setTransform(x: number, y: number, pivotX: number, pivotY: number, scaleX: number,\n scaleY: number, rotation: number, skewX: number, skewY: number): this\n {\n this.a = Math.cos(rotation + skewY) * scaleX;\n this.b = Math.sin(rotation + skewY) * scaleX;\n this.c = -Math.sin(rotation - skewX) * scaleY;\n this.d = Math.cos(rotation - skewX) * scaleY;\n\n this.tx = x - ((pivotX * this.a) + (pivotY * this.c));\n this.ty = y - ((pivotX * this.b) + (pivotY * this.d));\n\n return this;\n }\n\n /**\n * Prepends the given Matrix to this Matrix.\n * @param matrix - The matrix to prepend\n * @returns This matrix. Good for chaining method calls.\n */\n public prepend(matrix: Matrix): this\n {\n const tx1 = this.tx;\n\n if (matrix.a !== 1 || matrix.b !== 0 || matrix.c !== 0 || matrix.d !== 1)\n {\n const a1 = this.a;\n const c1 = this.c;\n\n this.a = (a1 * matrix.a) + (this.b * matrix.c);\n this.b = (a1 * matrix.b) + (this.b * matrix.d);\n this.c = (c1 * matrix.a) + (this.d * matrix.c);\n this.d = (c1 * matrix.b) + (this.d * matrix.d);\n }\n\n this.tx = (tx1 * matrix.a) + (this.ty * matrix.c) + matrix.tx;\n this.ty = (tx1 * matrix.b) + (this.ty * matrix.d) + matrix.ty;\n\n return this;\n }\n\n /**\n * Decomposes the matrix (x, y, scaleX, scaleY, and rotation) and sets the properties on to a transform.\n * @param transform - The transform to apply the properties to.\n * @returns The transform with the newly applied properties\n */\n public decompose(transform: TransformableObject): TransformableObject\n {\n // sort out rotation / skew..\n const a = this.a;\n const b = this.b;\n const c = this.c;\n const d = this.d;\n const pivot = transform.pivot;\n\n const skewX = -Math.atan2(-c, d);\n const skewY = Math.atan2(b, a);\n\n const delta = Math.abs(skewX + skewY);\n\n if (delta < 0.00001 || Math.abs(PI_2 - delta) < 0.00001)\n {\n transform.rotation = skewY;\n transform.skew.x = transform.skew.y = 0;\n }\n else\n {\n transform.rotation = 0;\n transform.skew.x = skewX;\n transform.skew.y = skewY;\n }\n\n // next set scale\n transform.scale.x = Math.sqrt((a * a) + (b * b));\n transform.scale.y = Math.sqrt((c * c) + (d * d));\n\n // next set position\n transform.position.x = this.tx + ((pivot.x * a) + (pivot.y * c));\n transform.position.y = this.ty + ((pivot.x * b) + (pivot.y * d));\n\n return transform;\n }\n\n /**\n * Inverts this matrix\n * @returns This matrix. Good for chaining method calls.\n */\n public invert(): this\n {\n const a1 = this.a;\n const b1 = this.b;\n const c1 = this.c;\n const d1 = this.d;\n const tx1 = this.tx;\n const n = (a1 * d1) - (b1 * c1);\n\n this.a = d1 / n;\n this.b = -b1 / n;\n this.c = -c1 / n;\n this.d = a1 / n;\n this.tx = ((c1 * this.ty) - (d1 * tx1)) / n;\n this.ty = -((a1 * this.ty) - (b1 * tx1)) / n;\n\n return this;\n }\n\n /** Checks if this matrix is an identity matrix */\n public isIdentity(): boolean\n {\n return this.a === 1 && this.b === 0 && this.c === 0 && this.d === 1 && this.tx === 0 && this.ty === 0;\n }\n\n /**\n * Resets this Matrix to an identity (default) matrix.\n * @returns This matrix. Good for chaining method calls.\n */\n public identity(): this\n {\n this.a = 1;\n this.b = 0;\n this.c = 0;\n this.d = 1;\n this.tx = 0;\n this.ty = 0;\n\n return this;\n }\n\n /**\n * Creates a new Matrix object with the same values as this one.\n * @returns A copy of this matrix. Good for chaining method calls.\n */\n public clone(): Matrix\n {\n const matrix = new Matrix();\n\n matrix.a = this.a;\n matrix.b = this.b;\n matrix.c = this.c;\n matrix.d = this.d;\n matrix.tx = this.tx;\n matrix.ty = this.ty;\n\n return matrix;\n }\n\n /**\n * Changes the values of the given matrix to be the same as the ones in this matrix\n * @param matrix - The matrix to copy to.\n * @returns The matrix given in parameter with its values updated.\n */\n public copyTo(matrix: Matrix): Matrix\n {\n matrix.a = this.a;\n matrix.b = this.b;\n matrix.c = this.c;\n matrix.d = this.d;\n matrix.tx = this.tx;\n matrix.ty = this.ty;\n\n return matrix;\n }\n\n /**\n * Changes the values of the matrix to be the same as the ones in given matrix\n * @param matrix - The matrix to copy from.\n * @returns this\n */\n public copyFrom(matrix: Matrix): this\n {\n this.a = matrix.a;\n this.b = matrix.b;\n this.c = matrix.c;\n this.d = matrix.d;\n this.tx = matrix.tx;\n this.ty = matrix.ty;\n\n return this;\n }\n\n /**\n * check to see if two matrices are the same\n * @param matrix - The matrix to compare to.\n */\n public equals(matrix: Matrix)\n {\n return matrix.a === this.a && matrix.b === this.b\n && matrix.c === this.c && matrix.d === this.d\n && matrix.tx === this.tx && matrix.ty === this.ty;\n }\n\n // #if _DEBUG\n public toString(): string\n {\n return `[pixi.js:Matrix a=${this.a} b=${this.b} c=${this.c} d=${this.d} tx=${this.tx} ty=${this.ty}]`;\n }\n // #endif\n\n /**\n * A default (identity) matrix.\n *\n * This is a shared object, if you want to modify it consider creating a new `Matrix`\n * @readonly\n */\n static get IDENTITY(): Readonly