Files
nothoughts/node_modules/pixi.js/lib/maths/matrix/Matrix.js
2025-08-04 18:57:35 +02:00

405 lines
12 KiB
JavaScript

'use strict';
var _const = require('../misc/const.js');
var Point = require('../point/Point.js');
"use strict";
class Matrix {
/**
* @param a - x scale
* @param b - y skew
* @param c - x skew
* @param d - y scale
* @param tx - x translation
* @param ty - y translation
*/
constructor(a = 1, b = 0, c = 0, d = 1, tx = 0, ty = 0) {
/** An array of the current matrix. Only populated when `toArray` is called */
this.array = null;
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.tx = tx;
this.ty = ty;
}
/**
* Creates a Matrix object based on the given array. The Element to Matrix mapping order is as follows:
*
* a = array[0]
* b = array[1]
* c = array[3]
* d = array[4]
* tx = array[2]
* ty = array[5]
* @param array - The array that the matrix will be populated from.
*/
fromArray(array) {
this.a = array[0];
this.b = array[1];
this.c = array[3];
this.d = array[4];
this.tx = array[2];
this.ty = array[5];
}
/**
* Sets the matrix properties.
* @param a - Matrix component
* @param b - Matrix component
* @param c - Matrix component
* @param d - Matrix component
* @param tx - Matrix component
* @param ty - Matrix component
* @returns This matrix. Good for chaining method calls.
*/
set(a, b, c, d, tx, ty) {
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.tx = tx;
this.ty = ty;
return this;
}
/**
* Creates an array from the current Matrix object.
* @param transpose - Whether we need to transpose the matrix or not
* @param [out=new Float32Array(9)] - If provided the array will be assigned to out
* @returns The newly created array which contains the matrix
*/
toArray(transpose, out) {
if (!this.array) {
this.array = new Float32Array(9);
}
const array = out || this.array;
if (transpose) {
array[0] = this.a;
array[1] = this.b;
array[2] = 0;
array[3] = this.c;
array[4] = this.d;
array[5] = 0;
array[6] = this.tx;
array[7] = this.ty;
array[8] = 1;
} else {
array[0] = this.a;
array[1] = this.c;
array[2] = this.tx;
array[3] = this.b;
array[4] = this.d;
array[5] = this.ty;
array[6] = 0;
array[7] = 0;
array[8] = 1;
}
return array;
}
/**
* Get a new position with the current transformation applied.
* Can be used to go from a child's coordinate space to the world coordinate space. (e.g. rendering)
* @param pos - The origin
* @param {Point} [newPos] - The point that the new position is assigned to (allowed to be same as input)
* @returns {Point} The new point, transformed through this matrix
*/
apply(pos, newPos) {
newPos = newPos || new Point.Point();
const x = pos.x;
const y = pos.y;
newPos.x = this.a * x + this.c * y + this.tx;
newPos.y = this.b * x + this.d * y + this.ty;
return newPos;
}
/**
* Get a new position with the inverse of the current transformation applied.
* Can be used to go from the world coordinate space to a child's coordinate space. (e.g. input)
* @param pos - The origin
* @param {Point} [newPos] - The point that the new position is assigned to (allowed to be same as input)
* @returns {Point} The new point, inverse-transformed through this matrix
*/
applyInverse(pos, newPos) {
newPos = newPos || new Point.Point();
const a = this.a;
const b = this.b;
const c = this.c;
const d = this.d;
const tx = this.tx;
const ty = this.ty;
const id = 1 / (a * d + c * -b);
const x = pos.x;
const y = pos.y;
newPos.x = d * id * x + -c * id * y + (ty * c - tx * d) * id;
newPos.y = a * id * y + -b * id * x + (-ty * a + tx * b) * id;
return newPos;
}
/**
* Translates the matrix on the x and y.
* @param x - How much to translate x by
* @param y - How much to translate y by
* @returns This matrix. Good for chaining method calls.
*/
translate(x, y) {
this.tx += x;
this.ty += y;
return this;
}
/**
* Applies a scale transformation to the matrix.
* @param x - The amount to scale horizontally
* @param y - The amount to scale vertically
* @returns This matrix. Good for chaining method calls.
*/
scale(x, y) {
this.a *= x;
this.d *= y;
this.c *= x;
this.b *= y;
this.tx *= x;
this.ty *= y;
return this;
}
/**
* Applies a rotation transformation to the matrix.
* @param angle - The angle in radians.
* @returns This matrix. Good for chaining method calls.
*/
rotate(angle) {
const cos = Math.cos(angle);
const sin = Math.sin(angle);
const a1 = this.a;
const c1 = this.c;
const tx1 = this.tx;
this.a = a1 * cos - this.b * sin;
this.b = a1 * sin + this.b * cos;
this.c = c1 * cos - this.d * sin;
this.d = c1 * sin + this.d * cos;
this.tx = tx1 * cos - this.ty * sin;
this.ty = tx1 * sin + this.ty * cos;
return this;
}
/**
* Appends the given Matrix to this Matrix.
* @param matrix - The matrix to append.
* @returns This matrix. Good for chaining method calls.
*/
append(matrix) {
const a1 = this.a;
const b1 = this.b;
const c1 = this.c;
const d1 = this.d;
this.a = matrix.a * a1 + matrix.b * c1;
this.b = matrix.a * b1 + matrix.b * d1;
this.c = matrix.c * a1 + matrix.d * c1;
this.d = matrix.c * b1 + matrix.d * d1;
this.tx = matrix.tx * a1 + matrix.ty * c1 + this.tx;
this.ty = matrix.tx * b1 + matrix.ty * d1 + this.ty;
return this;
}
/**
* Appends two matrix's and sets the result to this matrix. AB = A * B
* @param a - The matrix to append.
* @param b - The matrix to append.
* @returns This matrix. Good for chaining method calls.
*/
appendFrom(a, b) {
const a1 = a.a;
const b1 = a.b;
const c1 = a.c;
const d1 = a.d;
const tx = a.tx;
const ty = a.ty;
const a2 = b.a;
const b2 = b.b;
const c2 = b.c;
const d2 = b.d;
this.a = a1 * a2 + b1 * c2;
this.b = a1 * b2 + b1 * d2;
this.c = c1 * a2 + d1 * c2;
this.d = c1 * b2 + d1 * d2;
this.tx = tx * a2 + ty * c2 + b.tx;
this.ty = tx * b2 + ty * d2 + b.ty;
return this;
}
/**
* Sets the matrix based on all the available properties
* @param x - Position on the x axis
* @param y - Position on the y axis
* @param pivotX - Pivot on the x axis
* @param pivotY - Pivot on the y axis
* @param scaleX - Scale on the x axis
* @param scaleY - Scale on the y axis
* @param rotation - Rotation in radians
* @param skewX - Skew on the x axis
* @param skewY - Skew on the y axis
* @returns This matrix. Good for chaining method calls.
*/
setTransform(x, y, pivotX, pivotY, scaleX, scaleY, rotation, skewX, skewY) {
this.a = Math.cos(rotation + skewY) * scaleX;
this.b = Math.sin(rotation + skewY) * scaleX;
this.c = -Math.sin(rotation - skewX) * scaleY;
this.d = Math.cos(rotation - skewX) * scaleY;
this.tx = x - (pivotX * this.a + pivotY * this.c);
this.ty = y - (pivotX * this.b + pivotY * this.d);
return this;
}
/**
* Prepends the given Matrix to this Matrix.
* @param matrix - The matrix to prepend
* @returns This matrix. Good for chaining method calls.
*/
prepend(matrix) {
const tx1 = this.tx;
if (matrix.a !== 1 || matrix.b !== 0 || matrix.c !== 0 || matrix.d !== 1) {
const a1 = this.a;
const c1 = this.c;
this.a = a1 * matrix.a + this.b * matrix.c;
this.b = a1 * matrix.b + this.b * matrix.d;
this.c = c1 * matrix.a + this.d * matrix.c;
this.d = c1 * matrix.b + this.d * matrix.d;
}
this.tx = tx1 * matrix.a + this.ty * matrix.c + matrix.tx;
this.ty = tx1 * matrix.b + this.ty * matrix.d + matrix.ty;
return this;
}
/**
* Decomposes the matrix (x, y, scaleX, scaleY, and rotation) and sets the properties on to a transform.
* @param transform - The transform to apply the properties to.
* @returns The transform with the newly applied properties
*/
decompose(transform) {
const a = this.a;
const b = this.b;
const c = this.c;
const d = this.d;
const pivot = transform.pivot;
const skewX = -Math.atan2(-c, d);
const skewY = Math.atan2(b, a);
const delta = Math.abs(skewX + skewY);
if (delta < 1e-5 || Math.abs(_const.PI_2 - delta) < 1e-5) {
transform.rotation = skewY;
transform.skew.x = transform.skew.y = 0;
} else {
transform.rotation = 0;
transform.skew.x = skewX;
transform.skew.y = skewY;
}
transform.scale.x = Math.sqrt(a * a + b * b);
transform.scale.y = Math.sqrt(c * c + d * d);
transform.position.x = this.tx + (pivot.x * a + pivot.y * c);
transform.position.y = this.ty + (pivot.x * b + pivot.y * d);
return transform;
}
/**
* Inverts this matrix
* @returns This matrix. Good for chaining method calls.
*/
invert() {
const a1 = this.a;
const b1 = this.b;
const c1 = this.c;
const d1 = this.d;
const tx1 = this.tx;
const n = a1 * d1 - b1 * c1;
this.a = d1 / n;
this.b = -b1 / n;
this.c = -c1 / n;
this.d = a1 / n;
this.tx = (c1 * this.ty - d1 * tx1) / n;
this.ty = -(a1 * this.ty - b1 * tx1) / n;
return this;
}
/** Checks if this matrix is an identity matrix */
isIdentity() {
return this.a === 1 && this.b === 0 && this.c === 0 && this.d === 1 && this.tx === 0 && this.ty === 0;
}
/**
* Resets this Matrix to an identity (default) matrix.
* @returns This matrix. Good for chaining method calls.
*/
identity() {
this.a = 1;
this.b = 0;
this.c = 0;
this.d = 1;
this.tx = 0;
this.ty = 0;
return this;
}
/**
* Creates a new Matrix object with the same values as this one.
* @returns A copy of this matrix. Good for chaining method calls.
*/
clone() {
const matrix = new Matrix();
matrix.a = this.a;
matrix.b = this.b;
matrix.c = this.c;
matrix.d = this.d;
matrix.tx = this.tx;
matrix.ty = this.ty;
return matrix;
}
/**
* Changes the values of the given matrix to be the same as the ones in this matrix
* @param matrix - The matrix to copy to.
* @returns The matrix given in parameter with its values updated.
*/
copyTo(matrix) {
matrix.a = this.a;
matrix.b = this.b;
matrix.c = this.c;
matrix.d = this.d;
matrix.tx = this.tx;
matrix.ty = this.ty;
return matrix;
}
/**
* Changes the values of the matrix to be the same as the ones in given matrix
* @param matrix - The matrix to copy from.
* @returns this
*/
copyFrom(matrix) {
this.a = matrix.a;
this.b = matrix.b;
this.c = matrix.c;
this.d = matrix.d;
this.tx = matrix.tx;
this.ty = matrix.ty;
return this;
}
/**
* check to see if two matrices are the same
* @param matrix - The matrix to compare to.
*/
equals(matrix) {
return matrix.a === this.a && matrix.b === this.b && matrix.c === this.c && matrix.d === this.d && matrix.tx === this.tx && matrix.ty === this.ty;
}
toString() {
return `[pixi.js:Matrix a=${this.a} b=${this.b} c=${this.c} d=${this.d} tx=${this.tx} ty=${this.ty}]`;
}
/**
* A default (identity) matrix.
*
* This is a shared object, if you want to modify it consider creating a new `Matrix`
* @readonly
*/
static get IDENTITY() {
return identityMatrix.identity();
}
/**
* A static Matrix that can be used to avoid creating new objects.
* Will always ensure the matrix is reset to identity when requested.
* Use this object for fast but temporary calculations, as it may be mutated later on.
* This is a different object to the `IDENTITY` object and so can be modified without changing `IDENTITY`.
* @readonly
*/
static get shared() {
return tempMatrix.identity();
}
}
const tempMatrix = new Matrix();
const identityMatrix = new Matrix();
exports.Matrix = Matrix;
//# sourceMappingURL=Matrix.js.map