Added tf example of non-closed path, with trainable stroke width
This commit is contained in:
109
apps/single_stroke_tf.py
Normal file
109
apps/single_stroke_tf.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import pydiffvg_tensorflow as pydiffvg
|
||||
import tensorflow as tf
|
||||
import skimage
|
||||
import numpy as np
|
||||
|
||||
canvas_width, canvas_height = 256, 256
|
||||
num_control_points = tf.constant([2])
|
||||
|
||||
points = tf.constant([[120.0, 30.0], # base
|
||||
[150.0, 60.0], # control point
|
||||
[ 90.0, 198.0], # control point
|
||||
[ 60.0, 218.0]]) # base
|
||||
path = pydiffvg.Path(num_control_points = num_control_points,
|
||||
points = points,
|
||||
is_closed = False,
|
||||
stroke_width = tf.constant(15.0))
|
||||
|
||||
shapes = [path]
|
||||
path_group = pydiffvg.ShapeGroup( shape_ids = tf.constant([0], dtype=tf.int32),
|
||||
fill_color = tf.constant([0.0, 0.0, 0.0, 0.0]),
|
||||
stroke_color = tf.constant([0.6, 0.3, 0.6, 0.8]))
|
||||
shape_groups = [path_group]
|
||||
scene_args = pydiffvg.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
render = pydiffvg.render
|
||||
img = render(tf.constant(256), # width
|
||||
tf.constant(256), # height
|
||||
tf.constant(2), # num_samples_x
|
||||
tf.constant(2), # num_samples_y
|
||||
tf.constant(0), # seed
|
||||
*scene_args)
|
||||
# The output image is in linear RGB space. Do Gamma correction before saving the image.
|
||||
pydiffvg.imwrite(img, 'results/single_stroke_tf/target.png', gamma=2.2)
|
||||
target = tf.identity(img)
|
||||
|
||||
|
||||
# Move the path to produce initial guess
|
||||
# normalize points for easier learning rate
|
||||
points_n = tf.Variable([[100.0/256.0, 40.0/256.0], # base
|
||||
[155.0/256.0, 65.0/256.0], # control point
|
||||
[100.0/256.0, 180.0/256.0], # control point
|
||||
[ 65.0/256.0, 238.0/256.0]] # base
|
||||
)
|
||||
stroke_color = tf.Variable([0.4, 0.7, 0.5, 0.5])
|
||||
stroke_width_n = tf.Variable(5.0 / 100.0)
|
||||
path.points = points_n * 256
|
||||
path.stroke_width = stroke_width_n * 100
|
||||
path_group.stroke_color = stroke_color
|
||||
scene_args = pydiffvg.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
img = render(tf.constant(256), # width
|
||||
tf.constant(256), # height
|
||||
tf.constant(2), # num_samples_x
|
||||
tf.constant(2), # num_samples_y
|
||||
tf.constant(1), # seed
|
||||
*scene_args)
|
||||
pydiffvg.imwrite(img, 'results/single_stroke_tf/init.png', gamma=2.2)
|
||||
|
||||
|
||||
|
||||
optimizer = tf.compat.v1.train.AdamOptimizer(1e-2)
|
||||
|
||||
for t in range(100):
|
||||
print('iteration:', t)
|
||||
|
||||
with tf.GradientTape() as tape:
|
||||
# Forward pass: render the image.
|
||||
path.points = points_n * 256
|
||||
path.stroke_width = stroke_width_n * 100
|
||||
path_group.stroke_color = stroke_color
|
||||
# Important to use a different seed every iteration, otherwise the result
|
||||
# would be biased.
|
||||
scene_args = pydiffvg.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
img = render(tf.constant(256), # width
|
||||
tf.constant(256), # height
|
||||
tf.constant(2), # num_samples_x
|
||||
tf.constant(2), # num_samples_y
|
||||
tf.constant(t+1), # seed,
|
||||
*scene_args)
|
||||
loss_value = tf.reduce_sum(tf.square(img - target))
|
||||
|
||||
print(f"loss_value: {loss_value}")
|
||||
pydiffvg.imwrite(img, 'results/single_stroke_tf/iter_{}.png'.format(t))
|
||||
|
||||
grads = tape.gradient(loss_value, [points_n, stroke_width_n, stroke_color])
|
||||
print(grads)
|
||||
optimizer.apply_gradients(zip(grads, [points_n, stroke_width_n, stroke_color]))
|
||||
|
||||
|
||||
# Render the final result.
|
||||
path.points = points_n * 256
|
||||
path_group.fill_color = color
|
||||
scene_args = pydiffvg.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
img = render(tf.constant(256), # width
|
||||
tf.constant(256), # height
|
||||
tf.constant(2), # num_samples_x
|
||||
tf.constant(2), # num_samples_y
|
||||
tf.constant(101), # seed
|
||||
*scene_args)
|
||||
# Save the images and differences.
|
||||
pydiffvg.imwrite(img, 'results/single_stroke_tf/final.png')
|
||||
|
||||
# Convert the intermediate renderings to a video.
|
||||
from subprocess import call
|
||||
call(["ffmpeg", "-framerate", "24", "-i",
|
||||
"results/single_stroke_tf/iter_%d.png", "-vb", "20M",
|
||||
"results/single_curve_tf/out.mp4"])
|
Reference in New Issue
Block a user