initial commit
This commit is contained in:
108
apps/single_polygon.py
Normal file
108
apps/single_polygon.py
Normal file
@@ -0,0 +1,108 @@
|
||||
import pydiffvg
|
||||
import torch
|
||||
import skimage
|
||||
import numpy as np
|
||||
|
||||
# Use GPU if available
|
||||
pydiffvg.set_use_gpu(torch.cuda.is_available())
|
||||
|
||||
canvas_width, canvas_height = 256, 256
|
||||
# https://www.w3schools.com/graphics/svg_polygon.asp
|
||||
points = torch.tensor([[120.0, 30.0],
|
||||
[ 60.0, 218.0],
|
||||
[210.0, 98.0],
|
||||
[ 30.0, 98.0],
|
||||
[180.0, 218.0]])
|
||||
polygon = pydiffvg.Polygon(points = points, is_closed = True)
|
||||
shapes = [polygon]
|
||||
polygon_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]),
|
||||
fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0]))
|
||||
shape_groups = [polygon_group]
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
|
||||
render = pydiffvg.RenderFunction.apply
|
||||
img = render(256, # width
|
||||
256, # height
|
||||
2, # num_samples_x
|
||||
2, # num_samples_y
|
||||
0, # seed
|
||||
*scene_args)
|
||||
# The output image is in linear RGB space. Do Gamma correction before saving the image.
|
||||
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/target.png', gamma=2.2)
|
||||
target = img.clone()
|
||||
|
||||
# Move the polygon to produce initial guess
|
||||
# normalize points for easier learning rate
|
||||
points_n = torch.tensor([[140.0 / 256.0, 20.0 / 256.0],
|
||||
[ 65.0 / 256.0, 228.0 / 256.0],
|
||||
[215.0 / 256.0, 100.0 / 256.0],
|
||||
[ 35.0 / 256.0, 90.0 / 256.0],
|
||||
[160.0 / 256.0, 208.0 / 256.0]], requires_grad=True)
|
||||
color = torch.tensor([0.3, 0.2, 0.5, 1.0], requires_grad=True)
|
||||
polygon.points = points_n * 256
|
||||
polygon_group.color = color
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
img = render(256, # width
|
||||
256, # height
|
||||
2, # num_samples_x
|
||||
2, # num_samples_y
|
||||
1, # seed
|
||||
*scene_args)
|
||||
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/init.png', gamma=2.2)
|
||||
|
||||
# Optimize for radius & center
|
||||
optimizer = torch.optim.Adam([points_n, color], lr=1e-2)
|
||||
# Run 100 Adam iterations.
|
||||
for t in range(100):
|
||||
print('iteration:', t)
|
||||
optimizer.zero_grad()
|
||||
# Forward pass: render the image.
|
||||
polygon.points = points_n * 256
|
||||
polygon_group.color = color
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
img = render(256, # width
|
||||
256, # height
|
||||
2, # num_samples_x
|
||||
2, # num_samples_y
|
||||
t+1, # seed
|
||||
*scene_args)
|
||||
# Save the intermediate render.
|
||||
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/iter_{}.png'.format(t), gamma=2.2)
|
||||
# Compute the loss function. Here it is L2.
|
||||
loss = (img - target).pow(2).sum()
|
||||
print('loss:', loss.item())
|
||||
|
||||
# Backpropagate the gradients.
|
||||
loss.backward()
|
||||
# Print the gradients
|
||||
print('points_n.grad:', points_n.grad)
|
||||
print('color.grad:', color.grad)
|
||||
|
||||
# Take a gradient descent step.
|
||||
optimizer.step()
|
||||
# Print the current params.
|
||||
print('points:', polygon.points)
|
||||
print('color:', polygon_group.fill_color)
|
||||
|
||||
# Render the final result.
|
||||
polygon.points = points_n * 256
|
||||
polygon_group.color = color
|
||||
scene_args = pydiffvg.RenderFunction.serialize_scene(\
|
||||
canvas_width, canvas_height, shapes, shape_groups)
|
||||
img = render(256, # width
|
||||
256, # height
|
||||
2, # num_samples_x
|
||||
2, # num_samples_y
|
||||
102, # seed
|
||||
*scene_args)
|
||||
# Save the images and differences.
|
||||
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/final.png')
|
||||
|
||||
# Convert the intermediate renderings to a video.
|
||||
from subprocess import call
|
||||
call(["ffmpeg", "-framerate", "24", "-i",
|
||||
"results/single_polygon/iter_%d.png", "-vb", "20M",
|
||||
"results/single_polygon/out.mp4"])
|
Reference in New Issue
Block a user